
Gregor Grass

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225064/publications.pdf Version: 2024-02-01

CDECOD CDASS

#	Article	IF	CITATIONS
1	In-Depth Analysis of Bacillus anthracis 16S rRNA Genes and Transcripts Reveals Intra- and Intergenomic Diversity and Facilitates Anthrax Detection. MSystems, 2022, 7, e0136121.	3.8	2
2	Reoccurring Bovine Anthrax in Germany on the Same Pasture after 12 Years. Journal of Clinical Microbiology, 2022, 60, jcm0229121.	3.9	2
3	Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography. Toxins, 2021, 13, 115.	3.4	4
4	Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies. Viruses, 2021, 13, 1462.	3.3	7
5	Ultrasensitive Detection of Bacillus anthracis by Real-Time PCR Targeting a Polymorphism in Multi-Copy 16S rRNA Genes and Their Transcripts. International Journal of Molecular Sciences, 2021, 22, 12224.	4.1	8
6	Specific Detection of Yersinia pestis Based on Receptor Binding Proteins of Phages. Pathogens, 2020, 9, 611.	2.8	17
7	Improved Discrimination of Bacillus anthracis from Closely Related Species in the <i>Bacillus cereus Sensu Lato</i> Group Based on Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 2018, 56, .	3.9	30
8	Isolation and whole genome analysis of endospore-forming bacteria from heroin. Forensic Science International: Genetics, 2018, 32, 1-6.	3.1	6
9	Genotyping and phylogenetic placement of Bacillus anthracis isolates from Finland, a country with rare anthrax cases. BMC Microbiology, 2018, 18, 102.	3.3	16
10	The identification of novel single nucleotide polymorphisms to assist in mapping the spread of Bacillus anthracis across the Southern Caucasus. Scientific Reports, 2018, 8, 11254.	3.3	6
11	Genome Sequence of Historical Bacillus anthracis Strain Tyrol 4675 Isolated from a Bovine Anthrax Case in Austria. Genome Announcements, 2017, 5, .	0.8	2
12	Genome Sequence of Bacillus safensis Strain Ingolstadt Isolated from the Pectoralis Pouch of a Patient with Defibrillator-Related Surgery. Genome Announcements, 2017, 5, .	0.8	0
13	Genome Sequence of Bacillus pumilus Strain Bonn, Isolated from an Anthrax-Like Necrotic Skin Infection Site of a Child. Genome Announcements, 2016, 4, .	0.8	9
14	Genome Sequence of <i>Bacillus anthracis</i> Strain Tangail-1 from Bangladesh. Genome Announcements, 2016, 4, .	0.8	1
15	Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems. BioMetals, 2016, 29, 433-450.	4.1	2
16	Genome Sequence of <i>Bacillus anthracis</i> Strain Stendal, Isolated from an Anthrax Outbreak in Cattle in Germany. Genome Announcements, 2016, 4, .	0.8	10
17	Unexpected genomic relationships between Bacillus anthracis strains from Bangladesh and Central Europe. Infection, Genetics and Evolution, 2016, 45, 66-74.	2.3	5

Technical Note: Simple, scalable, and sensitive protocol for retrieving Bacillus anthracis (and other) Tj ETQq0 0 0 rg $\frac{BT}{2.2}$ /Overlock 10 Tf 50

#	Article	IF	CITATIONS
19	Genome Sequence of Bacillus anthracis Isolated from an Anthrax Burial Site in Pollino National Park, Basilicata Region (Southern Italy). Genome Announcements, 2015, 3, .	0.8	1
20	Genome Sequence of Bacillus anthracis Larissa, Associated with a Case of Cutaneous Anthrax in Greece. Genome Announcements, 2015, 3, .	0.8	0
21	Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years. EBioMedicine, 2015, 2, 1613-1618.	6.1	27
22	Turning a Hyperthermostable Metallo-Oxidase into a Laccase by Directed Evolution. ACS Catalysis, 2015, 5, 4932-4941.	11.2	19
23	Microevolution of Anthrax from a Young Ancestor (M.A.Y.A.) Suggests a Soil-Borne Life Cycle of Bacillus anthracis. PLoS ONE, 2015, 10, e0135346.	2.5	32
24	Injectional Anthrax in Heroin Users, Europe, 2000–2012. Emerging Infectious Diseases, 2014, 20, 322-323.	4.3	40
25	Draft Genome Sequence of Strain BF-4, a <i>Lysinibacillus</i> -Like Bacillus Isolated during an Anthrax Outbreak in Bavaria. Genome Announcements, 2014, 2, .	0.8	1
26	Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. BioMetals, 2014, 27, 1179-1189.	4.1	50
27	Impact of metal ion homeostasis of genetically modifiedEscherichia coliNissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract. European Journal of Microbiology and Immunology, 2013, 3, 229-235.	2.8	2
28	Draft Genome Sequences of Two Bulgarian Bacillus anthracis Strains. Genome Announcements, 2013, 1, e0015213.	0.8	2
29	Colonization resistance against genetically modifiedEscherichia coliK12 (W3110) strains is abrogated following broad-spectrum antibiotic treatment and acute ileitis. European Journal of Microbiology and Immunology, 2013, 3, 222-228.	2.8	4
30	A Whole-Cell Biosensor for the Detection of Gold. PLoS ONE, 2013, 8, e69292.	2.5	14
31	Draft Genome Sequence of Bacillus anthracis UR-1, Isolated from a German Heroin User. Journal of Bacteriology, 2012, 194, 5997-5998.	2.2	12
32	Draft Genome Sequence of Serratia sp. Strain M24T3, Isolated from Pinewood Disease Nematode Bursaphelenchus xylophilus. Journal of Bacteriology, 2012, 194, 3764-3764.	2.2	25
33	Draft Genome Sequence of Pseudomonas sp. Strain M47T1, Carried by Bursaphelenchus xylophilus Isolated from Pinus pinaster. Journal of Bacteriology, 2012, 194, 4789-4790.	2.2	8
34	Draft Genome Sequence of Bacillus anthracis BF-1, Isolated from Bavarian Cattle. Journal of Bacteriology, 2012, 194, 6360-6361.	2.2	11
35	Draft Genome Sequence of Pseudomonas psychrotolerans L19, Isolated from Copper Alloy Coins. Journal of Bacteriology, 2012, 194, 1623-1624.	2.2	8
36	Genome Sequence of the Moderately Halotolerant, Arsenite-Oxidizing Bacterium Pseudomonas stutzeri TS44. Journal of Bacteriology, 2012, 194, 4473-4474.	2.2	22

#	Article	IF	CITATIONS
37	Injection Anthrax. Deutsches Ärzteblatt International, 2012, 109, 843-8.	0.9	23
38	Antimicrobial metallic copper surfaces kill <i>Staphylococcus haemolyticus</i> via membrane damage. MicrobiologyOpen, 2012, 1, 46-52.	3.0	148
39	Fatal anthrax infection in a heroin user from southern Germany, June 2012. Eurosurveillance, 2012, 17, .	7.0	26
40	Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces. Applied and Environmental Microbiology, 2011, 77, 416-426.	3.1	148
41	Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics, 2011, 3, 1109.	2.4	297
42	Metallic Copper as an Antimicrobial Surface. Applied and Environmental Microbiology, 2011, 77, 1541-1547.	3.1	1,205
43	Bacterial Killing by Dry Metallic Copper Surfaces. Applied and Environmental Microbiology, 2011, 77, 794-802.	3.1	421
44	Crystal Structures of Multicopper Oxidase CueO Bound to Copper(I) and Silver(I). Journal of Biological Chemistry, 2011, 286, 37849-37857.	3.4	85
45	Metal toxicity. Metallomics, 2011, 3, 1095.	2.4	16
46	Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. BioMetals, 2011, 24, 429-444.	4.1	44
47	Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11. Journal of Biological Chemistry, 2011, 286, 25317-25330.	3.4	34
48	Roseomonas pecuniae sp. nov., isolated from the surface of a copper-alloy coin. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 610-615.	1.7	32
49	Contributions of Five Secondary Metal Uptake Systems to Metal Homeostasis of Cupriavidus metallidurans CH34. Journal of Bacteriology, 2011, 193, 4652-4663.	2.2	58
50	Survival of bacteria on metallic copper surfaces in a hospital trial. Applied Microbiology and Biotechnology, 2010, 87, 1875-1879.	3.6	160
51	Point mutations change specificity and kinetics of metal uptake by ZupT from Escherichia coli. BioMetals, 2010, 23, 643-656.	4.1	58
52	The Dps protein of Escherichia coli is involved in copper homeostasis. Microbiological Research, 2010, 165, 108-115.	5.3	26
53	Isolation and Characterization of Bacteria Resistant to Metallic Copper Surfaces. Applied and Environmental Microbiology, 2010, 76, 1341-1348.	3.1	132
54	Mechanisms of gold biomineralization in the bacterium <i>Cupriavidus metallidurans</i> . Proceedings of the United States of America, 2009, 106, 17757-17762.	7.1	283

#	Article	IF	CITATIONS
55	Low-temperature ZnO atomic layer deposition on biotemplates: flexible photocatalytic ZnO structures from eggshell membranes. Physical Chemistry Chemical Physics, 2009, 11, 3608.	2.8	56
56	Sandwich Hybridization Assay for Sensitive Detection of Dynamic Changes in mRNA Transcript Levels in Crude Escherichia coli Cell Extracts in Response to Copper Ions. Applied and Environmental Microbiology, 2008, 74, 7463-7470.	3.1	28
57	Contribution of Copper Ion Resistance to Survival of <i>Escherichia coli</i> on Metallic Copper Surfaces. Applied and Environmental Microbiology, 2008, 74, 977-986.	3.1	253
58	A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS Journal, 2007, 274, 2683-2694.	4.7	51
59	The RcnRA (YohLM) system of Escherichia coli: A connection between nickel, cobalt and iron homeostasis. BioMetals, 2007, 20, 759-771.	4.1	60
60	A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Molecular Microbiology, 2006, 62, 120-131.	2.5	131
61	Sulphate assimilation under Cd2+ stress in Physcomitrella patens – combined transcript, enzyme and metabolite profiling. Plant, Cell and Environment, 2006, 29, 1801-1811.	5.7	52
62	Iron Transport in Escherichia Coli: All has not been said and Done. BioMetals, 2006, 19, 159-172.	4.1	56
63	FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Archives of Microbiology, 2005, 183, 9-18.	2.2	205
64	New developments in the understanding of the cation diffusion facilitator family. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 215-226.	3.0	112
65	Control of Expression of a Periplasmic Nickel Efflux Pump by Periplasmic Nickel Concentrations. BioMetals, 2005, 18, 437-448.	4.1	57
66	Role of the Extracytoplasmic Function Protein Family Sigma Factor RpoE in Metal Resistance of <i>Escherichia coli</i> . Journal of Bacteriology, 2005, 187, 2297-2307.	2.2	111
67	TolC Is Involved in Enterobactin Efflux across the Outer Membrane of Escherichia coli. Journal of Bacteriology, 2005, 187, 6701-6707.	2.2	140
68	The Metal Permease ZupT from Escherichia coli Is a Transporter with a Broad Substrate Spectrum. Journal of Bacteriology, 2005, 187, 1604-1611.	2.2	196
69	Cuprous Oxidase Activity of CueO from Escherichia coli. Journal of Bacteriology, 2004, 186, 7815-7817.	2.2	172
70	Characteristics of Zinc Transport by Two Bacterial Cation Diffusion Facilitators from Ralstonia metallidurans CH34 and Escherichia coli. Journal of Bacteriology, 2004, 186, 7499-7507.	2.2	119
71	Camelysin Is a Novel Surface Metalloproteinase from Bacillus cereus. Infection and Immunity, 2004, 72, 219-228.	2.2	40
72	The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from <i>Wautersia metallidurans</i> CH34 Are Transporters of Broad Metal Specificity. Journal of Bacteriology, 2004, 186, 8036-8043.	2.2	121

#	Article	IF	CITATIONS
73	Linkage between Catecholate Siderophores and the Multicopper Oxidase CueO in <i>Escherichia coli</i> . Journal of Bacteriology, 2004, 186, 5826-5833.	2.2	116
74	Real-time PCR quantification of a green fluorescent protein-labeled, genetically engineeredPseudomonas putidastrain during 2-chlorobenzoate degradation in soil. FEMS Microbiology Letters, 2004, 233, 307-314.	1.8	33
75	Real-time PCR quantification of a green fluorescent protein-labeled, genetically engineered Pseudomonas putida strain during 2-chlorobenzoate degradation in soil. FEMS Microbiology Letters, 2004, 233, 307-314.	1.8	11
76	Escherichia colimechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 2003, 27, 197-213.	8.6	608
77	Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of <i>Escherichia coli</i> . Journal of Bacteriology, 2003, 185, 3804-3812.	2.2	462
78	A Labile Regulatory Copper Ion Lies Near the T1 Copper Site in the Multicopper Oxidase CueO. Journal of Biological Chemistry, 2003, 278, 31958-31963.	3.4	138
79	Interplay of the Czc System and Two P-Type ATPases in Conferring Metal Resistance to <i>Ralstonia metallidurans</i> . Journal of Bacteriology, 2003, 185, 4354-4361.	2.2	117
80	Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2766-2771.	7.1	296
81	ZupT Is a Zn(II) Uptake System in <i>Escherichia coli</i> . Journal of Bacteriology, 2002, 184, 864-866.	2.2	165
82	The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochemical and Biophysical Research Communications, 2002, 295, 616-620.	2.1	110
83	Functional analysis of theEscherichia colizinc transporter ZitB. FEMS Microbiology Letters, 2002, 215, 273-278.	1.8	63
84	Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiology Letters, 2002, 215, 273-278.	1.8	1
85	Escherichia coli CopA N-Terminal Cys(X)2Cys Motifs Are Not Required for Copper Resistance or Transport. Biochemical and Biophysical Research Communications, 2001, 286, 414-418.	2.1	53
86	CueO Is a Multi-copper Oxidase That Confers Copper Tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 2001, 286, 902-908.	2.1	292
87	ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli. Journal of Bacteriology, 2001, 183, 4664-4667.	2.2	154
88	NreB from Achromobacter xylosoxidans 31A Is a Nickel-Induced Transporter Conferring Nickel Resistance. Journal of Bacteriology, 2001, 183, 2803-2807.	2.2	93
89	Genes Involved in Copper Homeostasis in <i>Escherichia coli</i> . Journal of Bacteriology, 2001, 183, 2145-2147.	2.2	206
90	The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology (United Kingdom), 2001, 147, 965-972.	1.8	177

#	Article	IF	CITATIONS
91	Regulation of the <i>cnr</i> Cobalt and Nickel Resistance Determinant from <i>Ralstonia</i> sp. Strain CH34. Journal of Bacteriology, 2000, 182, 1390-1398.	2.2	126