Mikko Kiviranta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6224896/publications.pdf

Version: 2024-02-01

840776 940533 22 317 11 16 citations h-index g-index papers 22 22 22 196 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Superconductive Circuits and the General-Purpose Electronic Simulator APLAC. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
2	Two-Stage SQUID Amplifier for the Frequency Multiplexed Readout of the X-IFU X-Ray Camera. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	8
3	Demonstration of MHz frequency domain multiplexing readout of 37 transition edge sensors for high-resolution x-ray imaging spectrometers. Applied Physics Letters, 2021, 119, .	3.3	14
4	Progress in the Development of Frequency-Domain Multiplexing for the X-ray Integral Field Unit on Board the Athena Mission. Journal of Low Temperature Physics, 2020, 199, 737-744.	1.4	15
5	Unshielded SQUID Sensors for Ultra-Low-Field Magnetic Resonance Imaging. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-4.	1.7	9
6	Side-wall spacer passivated sub- $\langle i \rangle \hat{1} / 4 \langle i \rangle$ m Josephson junction fabrication process. Superconductor Science and Technology, 2017, 30, 125016.	3.5	15
7	Multilayer Fabrication Process for Josephson Junction Circuits Cross-Compatible Over Two Foundries. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	10
8	Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory. Proceedings of SPIE, 2016, , .	0.8	9
9	Nearly Quantum Limited Two-Stage SQUID Amplifiers for the Frequency Domain Multiplexing of TES Based X-ray and Infrared Detectors. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	12
10	Performance of TES X-ray Microcalorimeters with AC Bias Read-Out at MHz Frequencies. Journal of Low Temperature Physics, 2014, 176, 591.	1.4	13
11	A Multiloop SQUID and a SQUID Array With 1-\$mu hbox{m}\$ and Submicrometer Input Coils. IEEE Transactions on Applied Superconductivity, 2012, 22, 1600105-1600105.	1.7	9
12	Frequency Domain Multiplexed Readout of TES Detector Arrays With Baseband Feedback. IEEE Transactions on Applied Superconductivity, 2011, 21, 289-293.	1.7	22
13	Two-stage locally linearized SQUID readout for frequency domain multiplexed calorimeter arrays. Superconductor Science and Technology, 2011, 24, 049501.	3.5	4
14	The unshunted SQUID revisited. Superconductor Science and Technology, 2011, 24, 065003.	3.5	2
15	Baseband Feedback for Frequency-Domain-Multiplexed Readout of TES X-ray Detectors. AIP Conference Proceedings, 2009, , .	0.4	19
16	SQUID linearization by current-sampling feedback. Superconductor Science and Technology, 2008, 21, 045009.	3.5	21
17	Implementation of frequency domain multiplexing in imaging arrays of microcalorimeters. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 520, 551-554.	1.6	25
18	AC biased TES-based X-ray microcalorimeter with an energy resolution of 6.3 eV at 5.89 keV. IEEE Transactions on Applied Superconductivity, 2003, 13, 638-642.	1.7	7

#	Article	IF	CITATION
19	SQUID-based readout schemes for microcalorimeter arrays. , 2002, , .		46
20	Effect of Voltage Bias on the dc SQUID Characteristics. Journal of Low Temperature Physics, 2001, 123, 127-136.	1.4	6
21	Dc SQUID based on unshunted Josephson junctions: experimental results. IEEE Transactions on Applied Superconductivity, 1995, 5, 3248-3251.	1.7	11
22	DC-SQUID electronics based on the noise cancellation scheme. IEEE Transactions on Applied Superconductivity, 1995, 5, 2146-2148.	1.7	37