List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6224706/publications.pdf Version: 2024-02-01



ΙΠΑΝ Δ ΔΝΤΑ

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | ZnO-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 11413-11425.                                                                                                       | 1.5  | 520       |
| 2  | Electron Transport and Recombination in ZnO-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22622-22632.                                                               | 1.5  | 175       |
| 3  | Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques. Journal of Physical Chemistry C, 2014, 118, 22913-22922.                                  | 1.5  | 175       |
| 4  | Spectral Response of Opal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 13-17.                                                                                       | 1.5  | 137       |
| 5  | Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin<br>Plasma Polymers. ACS Applied Materials & Interfaces, 2018, 10, 11587-11594.                     | 4.0  | 125       |
| 6  | Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency. Nature Energy, 2020, 5, 468-477.                                          | 19.8 | 120       |
| 7  | Impedance analysis of perovskite solar cells: a case study. Journal of Materials Chemistry A, 2019, 7,<br>12191-12200.                                                                               | 5.2  | 109       |
| 8  | A Numerical Model for Charge Transport and Recombination in Dye-Sensitized Solar Cells. Journal of<br>Physical Chemistry B, 2006, 110, 5372-5378.                                                    | 1.2  | 102       |
| 9  | High Capacity Na–O <sub>2</sub> Batteries: Key Parameters for Solution-Mediated Discharge. Journal of Physical Chemistry C, 2016, 120, 20068-20076.                                                  | 1.5  | 96        |
| 10 | Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal<br>of Materials Chemistry A, 2017, 5, 10917-10927.                                              | 5.2  | 95        |
| 11 | Models of electron trapping and transport in polyethylene: Current–voltage characteristics. Journal of Applied Physics, 2002, 92, 1002-1008.                                                         | 1.1  | 92        |
| 12 | 2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar<br>cells. Journal of Materials Chemistry A, 2017, 5, 2346-2354.                                         | 5.2  | 92        |
| 13 | Specific cation interactions as the cause of slow dynamics and hysteresis in dye and perovskite solar cells: a small-perturbation study. Physical Chemistry Chemical Physics, 2016, 18, 31033-31042. | 1.3  | 89        |
| 14 | Electrons in the Band Gap: Spectroscopic Characterization of Anatase TiO <sub>2</sub> Nanocrystal<br>Electrodes under Fermi Level Control. Journal of Physical Chemistry C, 2012, 116, 11444-11455.  | 1.5  | 84        |
| 15 | Effect of Room-Temperature Ionic Liquids on CO <sub>2</sub> Separation by a Cu-BTC Metal–Organic<br>Framework. Journal of Physical Chemistry C, 2013, 117, 20762-20768.                              | 1.5  | 84        |
| 16 | Towards a Universal Approach for the Analysis of Impedance Spectra of Perovskite Solar Cells:<br>Equivalent Circuits and Empirical Analysis. ChemElectroChem, 2017, 4, 2891-2901.                    | 1.7  | 84        |
| 17 | An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures. Joule, 2019, 3, 2535-2549.                                                                           | 11.7 | 83        |
| 18 | Charge transport model for disordered materials: Application to sensitizedTiO2. Physical Review B, 2002, 65, .                                                                                       | 1,1  | 81        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Photoconducting Bragg Mirrors based on TiO <sub>2</sub> Nanoparticle Multilayers. Advanced<br>Functional Materials, 2008, 18, 2708-2715.                                                                                                     | 7.8  | 81        |
| 20 | Looking at the "Water-in-Deep-Eutectic-Solvent―System: A Dilution Range for High Performance<br>Eutectics. ACS Sustainable Chemistry and Engineering, 2019, 7, 17565-17573.                                                                  | 3.2  | 80        |
| 21 | Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. Journal of<br>Photochemistry and Photobiology A: Chemistry, 2008, 200, 364-370.                                                                         | 2.0  | 75        |
| 22 | Dynamics of Charge Separation and Trap-Limited Electron Transport in TiO <sub>2</sub><br>Nanostructures. Journal of Physical Chemistry C, 2007, 111, 13997-14000.                                                                            | 1.5  | 70        |
| 23 | A simple numerical model for the charge transport and recombination properties of dye-sensitized solar cells: A comparison of transport-limited and transfer-limited recombination. Solar Energy Materials and Solar Cells, 2010, 94, 45-50. | 3.0  | 67        |
| 24 | ZnO solar cells with an indoline sensitizer: a comparison between nanoparticulate films and electrodeposited nanowire arrays. Energy and Environmental Science, 2011, 4, 3400.                                                               | 15.6 | 67        |
| 25 | Determination of the Electron Diffusion Length in Dye-Sensitized Solar Cells by Random Walk<br>Simulation: Compensation Effects and Voltage Dependence. Journal of Physical Chemistry C, 2010, 114,<br>8552-8558.                            | 1.5  | 66        |
| 26 | Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in<br>Photonic-Crystal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1150-1154.                                                  | 1.5  | 65        |
| 27 | Origin and Whereabouts of Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9705-9713.                                                                                                                    | 1.5  | 65        |
| 28 | Influence of three-body forces on the gas-liquid coexistence of simple fluids: The phase equilibrium of argon. Physical Review E, 1997, 55, 2707-2712.                                                                                       | 0.8  | 64        |
| 29 | Challenges of modeling nanostructured materials for photocatalytic water splitting. Chemical Society Reviews, 2022, 51, 3794-3818.                                                                                                           | 18.7 | 64        |
| 30 | Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells.<br>Journal of Physical Chemistry Letters, 2018, 9, 3099-3104.                                                                                  | 2.1  | 59        |
| 31 | Electron transport in nanostructured metal-oxide semiconductors. Current Opinion in Colloid and Interface Science, 2012, 17, 124-131.                                                                                                        | 3.4  | 56        |
| 32 | Interface Play between Perovskite and Hole Selective Layer on the Performance and Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 34414-34421.                                                        | 4.0  | 56        |
| 33 | Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept. Physical Chemistry Chemical Physics, 2009, 11, 10359.                                           | 1.3  | 55        |
| 34 | The interaction between hybrid organic–inorganic halide perovskite and selective contacts in<br>perovskite solar cells: an infrared spectroscopy study. Physical Chemistry Chemical Physics, 2016, 18,<br>13583-13590.                       | 1.3  | 55        |
| 35 | The Impact of the Electrical Nature of the Metal Oxide on the Performance in Dye-Sensitized Solar<br>Cells: New Look at Old Paradigms. Journal of Physical Chemistry C, 2015, 119, 3931-3944.                                                | 1.5  | 53        |
| 36 | Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation. Physical Chemistry Chemical Physics, 2008, 10, 4478.                                                                             | 1.3  | 52        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Determination of Interfacial Chargeâ€Transfer Rate Constants in Perovskite Solar Cells. ChemSusChem,<br>2016, 9, 1647-1659.                                                                                       | 3.6  | 52        |
| 38 | A continuity equation for the simulation of the current–voltage curve and the time-dependent properties of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 10285.                      | 1.3  | 50        |
| 39 | Solvent-free ZnO dye-sensitised solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1846-1852.                                                                                                         | 3.0  | 49        |
| 40 | Numerical Simulation of the Currentâ^'Voltage Curve in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 19722-19731.                                                                       | 1.5  | 49        |
| 41 | Universal Features of Electron Dynamics in Solar Cells with TiO <sub>2</sub> Contact: From Dye<br>Solar Cells to Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3923-3930.               | 2.1  | 49        |
| 42 | How Important is Working with an Ordered Electrode to Improve the Charge Collection Efficiency in Nanostructured Solar Cells?. Journal of Physical Chemistry Letters, 2012, 3, 386-393.                           | 2.1  | 48        |
| 43 | Random walk numerical simulation for solar cell applications. Energy and Environmental Science, 2009, 2, 387.                                                                                                     | 15.6 | 47        |
| 44 | Modification of Mesoporous TiO <sub>2</sub> Films by Electrochemical Doping: Impact on<br>Photoelectrocatalytic and Photovoltaic Performance. Journal of Physical Chemistry C, 2013, 117,<br>1561-1570.           | 1.5  | 46        |
| 45 | Effects of Ion Distributions on Charge Collection in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1450-1453.                                                                                              | 8.8  | 45        |
| 46 | Combined Effect of Energetic and Spatial Disorder on the Trap-Limited Electron Diffusion Coefficient of Metal-Oxide Nanostructures. Journal of Physical Chemistry C, 2008, 112, 10287-10293.                      | 1.5  | 44        |
| 47 | Homeopathic Perovskite Solar Cells: Effect of Humidity during Fabrication on the Performance and Stability of the Device. Journal of Physical Chemistry C, 2018, 122, 5341-5348.                                  | 1.5  | 43        |
| 48 | Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model. Nanoscale, 2020, 12, 17385-17398.                  | 2.8  | 43        |
| 49 | Comparison of TiO <sub>2</sub> and ZnO Solar Cells Sensitized with an Indoline Dye: Time-Resolved<br>Laser Spectroscopy Studies of Partial Charge Separation Processes. Langmuir, 2014, 30, 2505-2512.            | 1.6  | 42        |
| 50 | Micelle Formation in Aqueous Solutions of Room Temperature Ionic Liquids: A Molecular Dynamics<br>Study. Journal of Physical Chemistry B, 2017, 121, 8348-8358.                                                   | 1.2  | 39        |
| 51 | ZnO-based dye solar cell with pure ionic-liquid electrolyte and organic sensitizer: the relevance of the dye–oxide interaction in an ionic-liquid medium. Physical Chemistry Chemical Physics, 2011, 13, 207-213. | 1.3  | 38        |
| 52 | Role of Ionic Liquid [EMIM] <sup>+</sup> [SCN] <sup>â^'</sup> in the Adsorption and Diffusion of Gases<br>in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 29694-29704.                 | 4.0  | 38        |
| 53 | Ion-electron correlations in liquid metals from orbital-freeab initiomolecular dynamics. Physical Review B, 1998, 58, 6124-6132.                                                                                  | 1.1  | 37        |
| 54 | Interpretation of Diffusion and Recombination in Nanostructured and Energy-Disordered Materials by Stochastic Quasiequilibrium Simulation. Journal of Physical Chemistry C, 2013, 117, 16275-16289.               | 1.5  | 37        |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Effective electrostatic interactions arising in core-shell charged microgel suspensions with added salt. Journal of Chemical Physics, 2013, 138, 134902.                                                         | 1.2  | 36        |
| 56 | Structure and dynamics of liquid lithium: comparison ofab initiomolecular dynamics predictions with scattering experiments. Journal of Physics Condensed Matter, 1999, 11, 6099-6111.                            | 0.7  | 34        |
| 57 | Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted chain approximation. Physical Review B, 2000, 61, 11400-11410.                                                     | 1.1  | 34        |
| 58 | Direct Estimation of the Electron Diffusion Length in Dye-Sensitized Solar Cells. Journal of Physical<br>Chemistry Letters, 2011, 2, 1045-1050.                                                                  | 2.1  | 34        |
| 59 | Origin of Nonlinear Recombination in Dye-Sensitized Solar Cells: Interplay between Charge Transport and Charge Transfer. Journal of Physical Chemistry C, 2012, 116, 22687-22697.                                | 1.5  | 34        |
| 60 | Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation.<br>Physical Chemistry Chemical Physics, 2022, 24, 15657-15671.                                            | 1.3  | 34        |
| 61 | ZnO/ZnO Core–Shell Nanowire Array Electrodes: Blocking of Recombination and Impressive<br>Enhancement of Photovoltage in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117,<br>13365-13373. | 1.5  | 32        |
| 62 | Molecular dynamics simulations of organohalide perovskite precursors: solvent effects in the formation of perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 22770-22777.                    | 1.3  | 32        |
| 63 | Self-consistent effective interactions in charged colloidal suspensions. Journal of Chemical Physics, 2002, 116, 10514-10522.                                                                                    | 1.2  | 31        |
| 64 | Transient states and the role of excited state self-quenching of indoline dyes in complete dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 692-701.                                                    | 2.0  | 30        |
| 65 | Electrochemical Reduction of Oxygen in Aprotic Ionic Liquids Containing Metal Cations: A Case Study<br>on the Na–O <sub>2</sub> system. ChemSusChem, 2017, 10, 1616-1623.                                        | 3.6  | 30        |
| 66 | The Role of Surface Recombination on the Performance of Perovskite Solar Cells: Effect of<br>Morphology and Crystalline Phase of TiO <sub>2</sub> Contact. Advanced Materials Interfaces, 2018,<br>5, 1801076.   | 1.9  | 30        |
| 67 | Enhanced Stability of Perovskite Solar Cells Incorporating Dopantâ€Free Crystalline Spiroâ€OMeTAD<br>Layers by Vacuum Sublimation. Advanced Energy Materials, 2020, 10, 1901524.                                 | 10.2 | 30        |
| 68 | The Redox Pair Chemical Environment Influence on the Recombination Loss in Dye-Sensitized Solar<br>Cells. Journal of Physical Chemistry C, 2014, 118, 3878-3889.                                                 | 1.5  | 29        |
| 69 | Quantum and Classical Molecular Dynamics of Ionic Liquid Electrolytes for Na/Liâ€based Batteries:<br>Molecular Origins of the Conductivity Behavior. ChemPhysChem, 2016, 17, 2473-2481.                          | 1.0  | 29        |
| 70 | ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells.<br>Journal of Materials Chemistry A, 2013, 1, 10173.                                                     | 5.2  | 27        |
| 71 | Efficient modelling of ion structure and dynamics in inorganic metal halide perovskites. Journal of Materials Chemistry A, 2020, 8, 11824-11836.                                                                 | 5.2  | 26        |
| 72 | Bridge functions for models of liquid metals. Journal of Chemical Physics, 1992, 97, 4349-4355.                                                                                                                  | 1.2  | 25        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Internal quantum efficiency and time signals from intensity-modulated photocurrent spectra of perovskite solar cells. Journal of Applied Physics, 2020, 128, .                                                         | 1.1 | 25        |
| 74 | On the use of semiphenomenological closures in integral equations for classical fluids. Journal of Chemical Physics, 1992, 96, 6132-6137.                                                                              | 1.2 | 24        |
| 75 | Nanoparticle TiO <sub>2</sub> Films Prepared by Pulsed Laser Deposition: Laser Desorption and Cationization of Model Adsorbates. Journal of Physical Chemistry C, 2010, 114, 17409-17415.                              | 1.5 | 24        |
| 76 | Molecular Dynamics Analysis of Charge Transport in Ionicâ€Liquid Electrolytes Containing Added Salt<br>with Mono, Di, and Trivalent Metal Cations. ChemPhysChem, 2018, 19, 1665-1673.                                  | 1.0 | 23        |
| 77 | Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 241, 58-66. | 2.0 | 22        |
| 78 | Mechanisms of Electron Transport and Recombination in ZnO Nanostructures for Dye‧ensitized Solar<br>Cells. ChemPhysChem, 2014, 15, 1088-1097.                                                                          | 1.0 | 22        |
| 79 | Highly efficient flexible cathodes for dye sensitized solar cells to complement Pt@TCO coatings.<br>Journal of Materials Chemistry A, 2014, 2, 3175.                                                                   | 5.2 | 22        |
| 80 | IR–Spectrophotoelectrochemical Characterization of Mesoporous Semiconductor Films. Analytical<br>Chemistry, 2012, 84, 3053-3057.                                                                                       | 3.2 | 19        |
| 81 | Understanding the Influence of Interface Morphology on the Performance of Perovskite Solar Cells.<br>Materials, 2018, 11, 1073.                                                                                        | 1.3 | 19        |
| 82 | Integral Equation Prediction of Reversible Coagulation in Charged Colloidal Suspensions. Langmuir, 2003, 19, 475-482.                                                                                                  | 1.6 | 18        |
| 83 | The cluster model: A hierarchically-ordered assemblage of random-packing spheres for modelling microstructure of porous materials. Journal of Non-Crystalline Solids, 2008, 354, 193-198.                              | 1.5 | 17        |
| 84 | Spectroscopic properties of electrochemically populated electronic states in nanostructured TiO2 films: anatase versus rutile. Physical Chemistry Chemical Physics, 2013, 15, 13790.                                   | 1.3 | 17        |
| 85 | Potential of CO2 capture from flue gases by physicochemical and biological methods: A comparative study. Chemical Engineering Journal, 2021, 417, 128020.                                                              | 6.6 | 17        |
| 86 | N-Aryl stilbazolium dyes as sensitizers for solar cells. Dyes and Pigments, 2012, 92, 766-777.                                                                                                                         | 2.0 | 16        |
| 87 | Plasma assisted deposition of single and multistacked TiO <sub>2</sub> hierarchical nanotube photoanodes. Nanoscale, 2017, 9, 8133-8141.                                                                               | 2.8 | 16        |
| 88 | Influence of dye chemistry and electrolyte solution on interfacial processes at nanostructured ZnO<br>in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 264,<br>26-33.     | 2.0 | 15        |
| 89 | Illumination Intensity Dependence of the Recombination Mechanism in Mixed Perovskite Solar Cells.<br>ChemPlusChem, 2021, 86, 1347-1356.                                                                                | 1.3 | 15        |
| 90 | Ion Transport in Electrolytes for Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 28448-28455.                                                  | 1.5 | 14        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls.<br>Scientific Reports, 2016, 6, 20637.                                                                                                           | 1.6 | 14        |
| 92  | Continuous time random walk simulation of short-range electron transport in TiO2 layers compared<br>with transient surface photovoltage measurements. Journal of Photochemistry and Photobiology A:<br>Chemistry, 2006, 182, 280-287.       | 2.0 | 13        |
| 93  | Synthesis and Raman spectroscopy study of TiO <sub>2</sub> nanoparticles. Physica Status Solidi C:<br>Current Topics in Solid State Physics, 2011, 8, 1970-1973.                                                                            | 0.8 | 13        |
| 94  | Brookite-Based Dye-Sensitized Solar Cells: Influence of Morphology and Surface Chemistry on Cell Performance. Journal of Physical Chemistry C, 2018, 122, 14277-14288.                                                                      | 1.5 | 13        |
| 95  | Integral equation study of liquid hydrogen fluoride. Journal of Chemical Physics, 2001, 114, 355.                                                                                                                                           | 1.2 | 12        |
| 96  | Structure of liquids composed of shifted dipole linear molecules. Physical Review E, 2003, 68, 021201.                                                                                                                                      | 0.8 | 12        |
| 97  | Control of the recombination rate by changing the polarity of the electrolyte in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 21513-21523.                                                                    | 1.3 | 12        |
| 98  | Charge-Transfer Reductive in Situ Doping of Mesoporous TiO <sub>2</sub> Photoelectrodes: Impact of<br>Electrolyte Composition and Film Morphology. Journal of Physical Chemistry C, 2016, 120, 27882-27894.                                 | 1.5 | 12        |
| 99  | Particle Consolidation and Electron Transport in Anatase TiO <sub>2</sub> Nanocrystal Films. ACS Applied Materials & amp; Interfaces, 2019, 11, 39859-39874.                                                                                | 4.0 | 12        |
| 100 | Exploring the influence of three-body classical dispersion forces on phase equilibria of simple fluids:<br>An integral-equation approach. Physical Review E, 1994, 49, 402-409.                                                             | 0.8 | 11        |
| 101 | Partially converged integral equations for charged colloidal suspensions with added salt. Journal of Physics Condensed Matter, 2005, 17, 7935-7953.                                                                                         | 0.7 | 11        |
| 102 | Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations. Physical Chemistry Chemical Physics, 2014, 16, 4082.                                                                                  | 1.3 | 11        |
| 103 | Defects in Porous Networks of WO <sub>3</sub> Particle Aggregates. ChemElectroChem, 2016, 3, 658-667.                                                                                                                                       | 1.7 | 11        |
| 104 | Dealing with Climate Parameters in the Fabrication of Perovskite Solar Cells under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 7132-7138.                                                                       | 3.2 | 11        |
| 105 | Internal and free energy in a pair of like-charged colloids: Monte Carlo simulations. Journal of Chemical Physics, 2010, 133, 154906.                                                                                                       | 1.2 | 10        |
| 106 | Conditions for diffusion-limited and reaction-limited recombination in nanostructured solar cells.<br>Journal of Chemical Physics, 2014, 140, 134702.                                                                                       | 1.2 | 10        |
| 107 | Effect of different photoanode nanostructures on the initial charge separation and electron injection process in dye sensitized solar cells: A photophysical study with indoline dyes. Materials Chemistry and Physics, 2016, 170, 218-228. | 2.0 | 10        |
| 108 | Lowâ€Temperature Plasma Processing of Platinum Porphyrins for the Development of Metal<br>Nanostructured Layers. Advanced Materials Interfaces, 2017, 4, 1601233.                                                                           | 1.9 | 10        |

| #   | Article                                                                                                                                                                                                     | IF           | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 109 | A fast method of solving the hypernetted-chain equation for molecular Lennard-Jones fluids.<br>Molecular Physics, 1995, 84, 743-755.                                                                        | 0.8          | 9         |
| 110 | Reference hypernetted chain theory for linear molecular fluids: A comprehensive study of the gasâ€liquid coexistence. Journal of Chemical Physics, 1996, 105, 4265-4273.                                    | 1.2          | 9         |
| 111 | A Critical Evaluation of the Influence of the Dark Exchange Current on the Performance of Dye-Sensitized Solar Cells. Materials, 2016, 9, 33.                                                               | 1.3          | 9         |
| 112 | Combining quantum and classical density functional theory for ion–electron mixtures. Journal of Non-Crystalline Solids, 2002, 312-314, 60-68.                                                               | 1.5          | 8         |
| 113 | Integral equation studies of charged colloids: non-solution boundaries and bridge functions.<br>Journal of Physics Condensed Matter, 2003, 15, S3491-S3507.                                                 | 0.7          | 8         |
| 114 | One-reactor plasma assisted fabrication of ZnO@TiO 2 multishell nanotubes: assessing the impact of a full coverage on the photovoltaic performance. Scientific Reports, 2017, 7, 9621.                      | 1.6          | 8         |
| 115 | Understanding the Interfaces between Triple-Cation Perovskite and Electron or Hole Transporting Material. ACS Applied Materials & Interfaces, 2020, 12, 30399-30410.                                        | 4.0          | 8         |
| 116 | Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility. Advanced Energy Materials, 2022, 12, .                                                           | 10.2         | 8         |
| 117 | On the use of a non-additive reference system in a reference hypernetted chain calculation of the structure of a binary liquid. Molecular Physics, 1995, 84, 1273-1278.                                     | 0.8          | 7         |
| 118 | Organic dyes for the sensitization of nanostructured ZnO photoanodes: effect of the anchoring functions. RSC Advances, 2015, 5, 68929-68938.                                                                | 1.7          | 7         |
| 119 | The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes. Physical Chemistry Chemical Physics, 2016, 18, 2303-2308. | 1.3          | 7         |
| 120 | Electrochemically Assisted Growth of CsPbBr 3 â€Based Solar Cells Without Selective Contacts.<br>ChemElectroChem, 2020, 7, 3961-3968.                                                                       | 1.7          | 7         |
| 121 | Integral equations and molecular dynamics in liquid metals; a complementary approach applied to molten Li. Journal of Physics Condensed Matter, 1993, 5, 379-386.                                           | 0.7          | 6         |
| 122 | Gasâ^'Liquid Coexistence Properties from Reference Hypernetted Chain Theory for Linear Polar<br>Solvents. Journal of Physical Chemistry B, 1997, 101, 1451-1459.                                            | 1.2          | 6         |
| 123 | Ruthenium(II) dichloro or dithiocyanato complexes with 4,4′:2′,2″:4″,4‴-quaterpyridinium ligands: To<br>photosensitisers with enhanced low-energy absorption properties. Polyhedron, 2013, 50, 622-635.     | wards<br>1.0 | 6         |
| 124 | Correlation between the Effectiveness of the Electron-Selective Contact and Photovoltaic<br>Performance of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 877-882.                | 2.1          | 6         |
| 125 | Characterization of Photochromic Dye Solar Cells Using Small-Signal Perturbation Techniques. ACS Applied Energy Materials, 2021, 4, 8941-8952.                                                              | 2.5          | 6         |
| 126 | Highly Anisotropic Organometal Halide Perovskite Nanowalls Grown by Glancingâ€Angle Deposition.<br>Advanced Materials, 2022, 34, e2107739.                                                                  | 11.1         | 5         |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Photochromic Naphthopyran Dyes Incorporating a Benzene, Thiophene, or Furan Spacer: Effect on<br>Photochromic, Optoelectronic, and Photovoltaic Properties in Dyeâ€Sensitized Solar Cells. Solar Rrl, 0,<br>, 2100929.    | 3.1 | 5         |
| 128 | Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principles. Journal of Chemical Information and Modeling, 2022, 62, 6423-6435.                                    | 2.5 | 5         |
| 129 | Integral equation approaches to mixtures of atomic and molecular fluids. Journal of Chemical Physics, 1997, 106, 2712-2717.                                                                                               | 1.2 | 4         |
| 130 | Secondary Minimum Coagulation in Charged Colloidal Suspensions from Statistical Mechanics<br>Methods. Journal of Physical Chemistry B, 2007, 111, 1110-1118.                                                              | 1.2 | 4         |
| 131 | Influence of the charge generation profile on the collection efficiency of nanostructured solar cells: a random walk numerical simulation study. Molecular Simulation, 2012, 38, 1242-1250.                               | 0.9 | 4         |
| 132 | Surface Properties of Anatase TiO <sub>2</sub> Nanowire Films Grown from a Fluorideâ€Containing Solution. ChemPhysChem, 2013, 14, 1676-1685.                                                                              | 1.0 | 4         |
| 133 | The Structure of Warm Dense Matter Modeled with an Average Atom Model with Ion-Ion Correlations. Lecture Notes in Computational Science and Engineering, 2014, , 151-176.                                                 | 0.1 | 4         |
| 134 | Impact of the implementation of a mesoscopic TiO2 film from a low-temperature method on the performance and degradation of hybrid perovskite solar cells. Solar Energy, 2020, 201, 836-845.                               | 2.9 | 4         |
| 135 | A theoretical approach to the tight-binding band structure of liquid carbon and silicon beyond linear approximations. Journal of Chemical Physics, 1997, 106, 10238-10247.                                                | 1.2 | 3         |
| 136 | In search of a thermodynamically self-consistent integral equation for linear molecular fluids.<br>Molecular Physics, 1995, 85, 1239-1245.                                                                                | 0.8 | 2         |
| 137 | Solvent-Free ZnO Dye-Sensitised Solar Cells. ECS Transactions, 2009, 25, 111-122.                                                                                                                                         | 0.3 | 1         |
| 138 | Influence of Electron Solvation at the Surface of Nanostructured Semiconductors on the Electronic Density of States. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1581-1586.                         | 1.9 | 1         |
| 139 | Improving photoresponse characterization of dye-sensitized solar cells: application to the laser beam-induced current technique. Measurement Science and Technology, 2010, 21, 075702.                                    | 1.4 | 1         |
| 140 | The vapour–liquid transition of charge-stabilized colloidal suspensions: an effective one-component description. Journal of Physics Condensed Matter, 2003, 15, S3537-S3547.                                              | 0.7 | 0         |
| 141 | Application of correction algorithms for obtaining high-resolution LBIC maps of dye-sensitized solar cells. , 2006, 6197, 178.                                                                                            |     | 0         |
| 142 | Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes. Physical Chemistry Chemical Physics, 2016, 18, 14139-14139. | 1.3 | 0         |