
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6224698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of novel chemical compounds targeting filovirus VP40-mediated particle production. Antiviral Research, 2022, 199, 105267.	1.9	1
2	Lysophosphatidic acid receptor typeâ€1 mediates brain activation in microâ€positron emission tomography analysis in a fibromyalgiaâ€like mouse model. European Journal of Neuroscience, 2022, 56, 4224-4233.	1.2	1
3	Involvement of SNARE Protein Interaction for Non-classical Release of DAMPs/Alarmins Proteins, Prothymosin Alpha and S100A13. Cellular and Molecular Neurobiology, 2021, 41, 1817-1828.	1.7	2
4	Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Progress in Lipid Research, 2021, 81, 101079.	5.3	21
5	Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions. Cells, 2021, 10, 567.	1.8	4
6	Review of Kyotorphin Research: A Mysterious Opioid Analgesic Dipeptide and Its Molecular, Physiological, and Pharmacological Characteristics. Frontiers in Medical Technology, 2021, 3, 662697.	1.3	6
7	Secreted PLA2-III is a possible therapeutic target to treat neuropathic pain. Biochemical and Biophysical Research Communications, 2021, 568, 167-173.	1.0	7
8	Chronic generalized pain disrupts whole brain functional connectivity in mice. Brain Imaging and Behavior, 2021, 15, 2406-2416.	1.1	7
9	Prothymosin alpha and its mimetic hexapeptide improve delayed tissue plasminogen activatorâ€induced brain damage following cerebral ischemia. Journal of Neurochemistry, 2020, 153, 772-789.	2.1	13
10	Hexapeptide derived from prothymosin alpha attenuates cisplatin-induced acute kidney injury. Clinical and Experimental Nephrology, 2020, 24, 411-419.	0.7	1
11	GÎ ³ 7-specific prothymosin alpha deletion causes stress- and age-dependent motor dysfunction and anxiety. Biochemical and Biophysical Research Communications, 2020, 522, 264-269.	1.0	3
12	Mirtazapine, an <i>α</i> 2 Antagonist-Type Antidepressant, Reverses Pain and Lack of Morphine Analgesia in Fibromyalgia-Like Mouse Models. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 1-9.	1.3	5
13	Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells, 2020, 9, 1906.	1.8	8
14	Allodynia by Splenocytes From Mice With Acid-Induced Fibromyalgia-Like Generalized Pain and Its Sexual Dimorphic Regulation by Brain Microglia. Frontiers in Neuroscience, 2020, 14, 600166.	1.4	5
15	Experimental evidence for the involvement of F0/F1 ATPase and subsequent P2Y12 receptor activation in prothymosin alpha-induced protection of retinal ischemic damage. Journal of Pharmacological Sciences, 2020, 143, 127-131.	1.1	6
16	NR2A-NMDA Receptor Blockade Reverses the Lack of Morphine Analgesia Without Affecting Chronic Pain Status in a Fibromyalgia-Like Mouse Model. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 103-112.	1.3	12
17	Beneficial actions of prothymosin alpha-mimetic hexapeptide on central post-stroke pain, reduced social activity, learning-deficit and depression following cerebral ischemia in mice. Peptides, 2020, 126, 170265.	1.2	5
18	LPA receptor signaling as a therapeutic target for radical treatment of neuropathic pain and fibromyalgia. Pain Management, 2020, 10, 43-53.	0.7	19

#	Article	IF	CITATIONS
19	Drug discovery screening based on epigenetic control of COPD – Benserazide inhibits the prothymosin α-H1 histone interaction. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 2-LBS-31.	0.0	0
20	Systems Pathology of Neuropathic Pain and Fibromyalgia. Biological and Pharmaceutical Bulletin, 2019, 42, 1773-1782.	0.6	10
21	Abrogation of lysophosphatidic acid receptor 1 ameliorates murine vasculitis. Arthritis Research and Therapy, 2019, 21, 191.	1.6	11
22	Lysophosphatidic acid LPA1 and LPA3 receptors play roles in the maintenance of late tissue plasminogen activator-induced central poststroke pain in mice. Neurobiology of Pain (Cambridge, Mass), 2019, 5, 100020.	1.0	30
23	Critical Functionality Effects from Storage Temperature on Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Suspensions. Scientific Reports, 2019, 9, 2891.	1.6	19
24	LPA5 signaling is involved in multiple sclerosis-mediated neuropathic pain in the cuprizone mouse model. Journal of Pharmacological Sciences, 2018, 136, 93-96.	1.1	21
25	Amlexanox Inhibits Cerebral Ischemia-Induced Delayed Astrocytic High-Mobility Group Box 1 Release and Subsequent Brain Damage. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 27-36.	1.3	14
26	Tyrosyl-tRNA synthetase: A potential kyotorphin synthetase in mammals. Peptides, 2018, 101, 60-68.	1.2	8
27	Association Between Polymorphisms in the Purinergic P2Y12 Receptor Gene and Severity of Both Cancer Pain and Postoperative Pain. Pain Medicine, 2018, 19, 348-354.	0.9	16
28	Involvement of lysophosphatidic acid–induced astrocyte activation underlying the maintenance of partial sciatic nerve injury–induced neuropathic pain. Pain, 2018, 159, 2170-2178.	2.0	34
29	Ecto-F ₀ /F ₁ ATPase as a novel candidate of prothymosin α receptor. Expert Opinion on Biological Therapy, 2018, 18, 89-94.	1.4	7
30	Blockade of analgesic effects following systemic administration of N-methyl-kyotorphin, NMYR and arginine in mice deficient of preproenkephalin or proopiomelanocortin gene. Peptides, 2018, 107, 10-16.	1.2	3
31	Further in vitro and in vivo studies of newly discovered LPA2 agonists against radiation-induced damages. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-4-9.	0.0	0
32	Brain opioid-mediated analgesia by systemic administration of dipeptide kyotorphin analog. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-2-22.	0.0	0
33	Prothymosin alphaâ€deficiency enhances anxietyâ€like behaviors and impairs learning/memory functions and neurogenesis. Journal of Neurochemistry, 2017, 141, 124-136.	2.1	15
34	Lysophosphatidic acid signaling is the definitive mechanism underlying neuropathic pain. Pain, 2017, 158, S55-S65.	2.0	37
35	High-Throughput Screening and Prediction Model Building for Novel Hemozoin Inhibitors Using Physicochemical Properties. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	6
36	A mimetic of the mSin3-binding helix of NRSF/REST ameliorates abnormal pain behavior in chronic pain models. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4705-4709.	1.0	21

#	Article	IF	CITATIONS
37	Summary of the Fibromyalgia Research Symposium 2016 in Nagasaki. Pain Reports, 2017, 2, e582.	1.4	2
38	LPA1 receptor involvement in fibromyalgia-like pain induced by intermittent psychological stress, empathy. Neurobiology of Pain (Cambridge, Mass), 2017, 1, 16-25.	1.0	27
39	LPA receptor signaling plays a definitive role in pain memory mechanisms in mouse models for neuropathic pain and fibromyalgia. Pain Research, 2017, 32, 239-245.	0.1	Ο
40	Minocycline Does Not Decrease Intensity of Neuropathic Pain, but Improves Its Affective Dimension. Journal of Pain and Palliative Care Pharmacotherapy, 2016, 30, 1-6.	0.5	25
41	P-glycoprotein inhibitors improve effective dose and time of pregabalin to inhibit intermittent cold stress-induced central pain. Journal of Pharmacological Sciences, 2016, 131, 64-67.	1.1	14
42	Neuroprotective DAMPs member prothymosin alpha has additional beneficial actions against cerebral ischemia-induced vascular damages. Journal of Pharmacological Sciences, 2016, 132, 100-104.	1.1	18
43	Myelin-related gene silencing mediated by LPA1 – Rho/ROCK signaling is correlated to acetylation of NFκB in S16 Schwann cells. Journal of Pharmacological Sciences, 2016, 132, 162-165.	1.1	17
44	Subcellular dissemination of prothymosin alpha at normal physiology: immunohistochemical vis-a-vis western blotting perspective. BMC Physiology, 2016, 16, 2.	3.6	12
45	Neuroprotective impact of prothymosin alpha-derived hexapeptide against retinal ischemia–reperfusion. Neuroscience, 2016, 318, 206-218.	1.1	14
46	Energetics and protomer communication in the dynamical structure of S100A13 in free and protein-bound states. Molecular Simulation, 2016, 42, 874-881.	0.9	0
47	Lys39-Lysophosphatidate Carbonyl Oxygen Interaction Locks LPA1 N-terminal Cap to the Orthosteric Site and partners Arg124 During Receptor Activation. Scientific Reports, 2015, 5, 13343.	1.6	17
48	NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice. Molecular Brain, 2015, 8, 83.	1.3	22
49	Prothymosinâ€alpha preconditioning activates <scp>TLR</scp> 4– <scp>TRIF</scp> signaling to induce protection of ischemic retina. Journal of Neurochemistry, 2015, 135, 1161-1177.	2.1	37
50	Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. ELife, 2015, 4, .	2.8	27
51	Histone deacetylase inhibitors relieve morphine resistance in neuropathic pain after peripheral nerve injury. Journal of Pharmacological Sciences, 2015, 128, 208-211.	1.1	27
52	Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation. Computational Biology and Chemistry, 2015, 55, 14-22.	1.1	15
53	Evidence for ProTα-TLR4/MD-2 binding: molecular dynamics and gravimetric assay studies. Expert Opinion on Biological Therapy, 2015, 15, 223-229.	1.4	12
54	Donepezil Reverses Intermittent Stress-Induced Generalized Chronic Pain Syndrome in Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 471-479.	1.3	16

#	Article	IF	CITATIONS
55	A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents. Nature Protocols, 2015, 10, 12-24.	5.5	39
56	Lipid Mediator LPA-Induced Demyelination and Self-Amplification of LPA Biosynthesis in Chronic Pain Memory Mechanisms. , 2015, , 223-236.		0
57	Lysophosphatidic Acid and its Receptors LPA ₁ and LPA ₃ Mediate Paclitaxel-Induced Neuropathic Pain in Mice. Molecular Pain, 2014, 10, 1744-8069-10-71.	1.0	52
58	ls BoNT/B useful for pain treatment?. Pain, 2014, 155, 649-650.	2.0	3
59	Microglia Activation Precedes the Anti-Opioid BDNF and NMDA Receptor Mechanisms Underlying Morphine Analgesic Tolerance. Current Pharmaceutical Design, 2014, 19, 7355-7361.	0.9	24
60	Epigenetic Modification in Neuropathic Pain. Current Pharmaceutical Design, 2014, 21, 849-867.	0.9	25
61	An LPA Species (18:1 LPA) Plays Key Roles in the Self-Amplification of Spinal LPA Production in the Peripheral Neuropathic Pain Model. Molecular Pain, 2013, 9, 1744-8069-9-29.	1.0	50
62	Ageâ€dependent dystonia in striatal Gγ7 deficient mice is reversed by the dopamine D2 receptor agonist pramipexole. Journal of Neurochemistry, 2013, 124, 844-854.	2.1	16
63	Therapeutic benefits of 9-amino acid peptide derived from prothymosin alpha against ischemic damages. Peptides, 2013, 43, 68-75.	1.2	9
64	Interleukin-1β Plays Key Roles in LPA-Induced Amplification of LPA Production in Neuropathic Pain Model. Cellular and Molecular Neurobiology, 2013, 33, 1033-1041.	1.7	23
65	Epigenetic regulation of BDNF expression in the primary sensory neurons after peripheral nerve injury: Implications in the development of neuropathic pain. Neuroscience, 2013, 240, 147-154.	1.1	65
66	Retinal cell typeâ€specific prevention of ischemiaâ€induced damages by <scp>LPS</scp> â€ <scp>TLR</scp> 4 signaling through microglia. Journal of Neurochemistry, 2013, 126, 243-260.	2.1	44
67	Lysophosphatidic acid: Chemical signature of neuropathic pain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 61-73.	1.2	81
68	Necessity of Lysophosphatidic Acid Receptor 1 for Development of Arthritis. Arthritis and Rheumatism, 2013, 65, 2037-2047.	6.7	67
69	<scp>HDAC</scp> inhibitors restore <scp>C</scp> â€fibre sensitivity in experimental neuropathic pain model. British Journal of Pharmacology, 2013, 170, 991-998.	2.7	69
70	Novel neuroprotective action of prothymosin alphaâ€derived peptide against retinal and brain ischemic damages. Journal of Neurochemistry, 2013, 125, 713-723.	2.1	21
71	A Novel Unified Ab Initio and Template-Based Approach to GPCR Modeling: Case of EDG-LPA Receptors Current Bioinformatics, 2013, 8, 603-610.	0.7	3
72	Single Application of A2 NTX, a Botulinum Toxin A2 Subunit, Prevents Chronic Pain Over Long Periods in Both Diabetic and Spinal Cord Injury^ ^ndash;Induced Neuropathic Pain Models. Journal of Pharmacological Sciences, 2012, 119, 282-286.	1.1	19

#	Article	IF	CITATIONS
73	Neuronâ€specific nonâ€classical release of prothymosin alpha: a novel neuroprotective damageâ€associated molecular patterns. Journal of Neurochemistry, 2012, 123, 262-275.	2.1	16
74	Prothymosin α plays multifunctional cell robustness roles in genomic, epigenetic, and nongenomic mechanisms. Annals of the New York Academy of Sciences, 2012, 1269, 34-43.	1.8	25
75	Recent advances in understanding of various chronic pain mechanisms through lysophosphatidic acid (LPA) receptor signaling. Arthritis Research and Therapy, 2012, 14, .	1.6	1
76	Intermittent cold stress-induced experimental fibromyalgia model in mice - pharmacology and neurobiology. Arthritis Research and Therapy, 2012, 14, .	1.6	0
77	Pilocarpine suppresses hyperalgesia induced by intermittent cold stress (ICS) as an experimental fibromyalgia model in mice. Arthritis Research and Therapy, 2012, 14, .	1.6	0
78	Resistance to morphine analgesia and its underlying mechanisms in an experimental mouse model of fibromyalgia. Arthritis Research and Therapy, 2012, 14, .	1.6	0
79	Regional Distribution and Cell Type-Specific Subcellular Localization of Prothymosin Alpha in Brain. Cellular and Molecular Neurobiology, 2012, 32, 59-66.	1.7	8
80	Lysophosphatidic Acid as the Initiator of Neuropathic Pain. Biological and Pharmaceutical Bulletin, 2011, 34, 1154-1158.	0.6	30
81	Preâ€emptive morphine treatment abolishes nerve injuryâ€induced lysophospholipid synthesis in mass spectrometrical analysis. Journal of Neurochemistry, 2011, 118, 256-265.	2.1	13
82	Antinociceptive Effect of Cyclic Phosphatidic Acid and Its Derivative on Animal Models of Acute and Chronic Pain. Molecular Pain, 2011, 7, 1744-8069-7-33.	1.0	32
83	Permanent Relief from Intermittent Cold Stress-Induced Fibromyalgia-Like Abnormal Pain by Repeated Intrathecal Administration of Antidepressants. Molecular Pain, 2011, 7, 1744-8069-7-69.	1.0	36
84	Lysophosphatidic acid as an initiator of neuropathic pain: biosynthesis and demyelination. Clinical Lipidology, 2011, 6, 147-158.	0.4	12
85	Parathyroid hormone 2 receptor is a functional marker of nociceptive myelinated fibers responsible for neuropathic pain. Journal of Neurochemistry, 2010, 112, 521-530.	2.1	14
86	Calpainâ€mediated downâ€regulation of myelinâ€associated glycoprotein in lysophosphatidic acidâ€induced neuropathic pain. Journal of Neurochemistry, 2010, 113, 1002-1011.	2.1	39
87	Endocrine disrupting chemicals bind to a novel receptor, microtubuleâ€associated protein 2, and positively and negatively regulate dendritic outgrowth in hippocampal neurons. Journal of Neurochemistry, 2010, 114, 1333-1343.	2.1	12
88	Microglial activation mediates <i>de novo</i> lysophosphatidic acid production in a model of neuropathic pain. Journal of Neurochemistry, 2010, 115, 643-653.	2.1	62
89	Prothymosin α as robustness molecule against ischemic stress to brain and retina. Annals of the New York Academy of Sciences, 2010, 1194, 20-26.	1.8	15
90	Evidence for De Novo Synthesis of Lysophosphatidic Acid in the Spinal Cord through Phospholipase A ₂ and Autotaxin in Nerve Injury-Induced Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 540-546.	1.3	71

#	Article	IF	CITATIONS
91	Epigenetic Gene Silencing Underlies C-Fiber Dysfunctions in Neuropathic Pain. Journal of Neuroscience, 2010, 30, 4806-4814.	1.7	169
92	Absence of morphine analgesia and its underlying descending serotonergic activation in an experimental mouse model of fibromyalgia. Neuroscience Letters, 2010, 472, 184-187.	1.0	162
93	Autotaxin and Lysophosphatidic Acid ₁ receptor-Mediated Demyelination of Dorsal Root Fibers by Sciatic Nerve Injury and Intrathecal Lysophosphatidylcholine. Molecular Pain, 2010, 6, 1744-8069-6-78.	1.0	69
94	Mechanisms underlying morphine analgesic tolerance and dependence. Frontiers in Bioscience - Landmark, 2009, 14, 5260.	3.0	102
95	Prothymosin $\hat{I}\pm$ and cell death mode switch, a novel target for the prevention of cerebral ischemia-induced damage. , 2009, 123, 323-333.		37
96	Evidence for lysophosphatidic acid 1 receptor signaling in the early phase of neuropathic pain mechanisms in experiments using Kiâ€16425, a lysophosphatidic acid 1 receptor antagonist. Journal of Neurochemistry, 2009, 109, 603-610.	2.1	50
97	Profiling of BoNT/C3-reversible gene expression induced by lysophosphatidic acid: ephrinB1 gene up-regulation underlying neuropathic hyperalgesia and allodynia. Neurochemistry International, 2009, 54, 215-221.	1.9	29
98	Lysophosphatidic Acid-3 Receptor-Mediated Feed-Forward Production of Lysophosphatidic Acid: an Initiator of Nerve Injury-Induced Neuropathic Pain. Molecular Pain, 2009, 5, 1744-8069-5-64.	1.0	65
99	Cellular Mechanisms Underlying Morphine Analgesic Tolerance and Hyperalgesia. , 2009, , 9-20.		0
100	Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. NeuroReport, 2009, 20, 63-68.	0.6	39
101	Prothymosin \hat{l}_{\pm} plays a key role in cell death mode-switch, a new concept for neuroprotective mechanisms in stroke. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 315-323.	1.4	16
102	Lysophosphatidic acidâ€induced membrane ruffling and brainâ€derived neurotrophic factor gene expression are mediated by ATP release in primary microglia. Journal of Neurochemistry, 2008, 107, 152-160.	2.1	64
103	Simultaneous stimulation of spinal NK1 and NMDA receptors produces LPC which undergoes ATXâ€mediated conversion to LPA, an initiator of neuropathic pain. Journal of Neurochemistry, 2008, 107, 1556-1565.	2.1	45
104	Prolonged Gabapentin Analgesia in an Experimental Mouse Model of Fibromyalgia. Molecular Pain, 2008, 4, 1744-8069-4-52.	1.0	86
105	Involvement of LPA1Receptor Signaling in the Reorganization of Spinal Input through Abeta-Fibers in Mice with Partial Sciatic Nerve Injury. Molecular Pain, 2008, 4, 1744-8069-4-46.	1.0	32
106	Pharmacological Switch in Aβ-Fiber Stimulation-Induced Spinal Transmission in Mice with Partial Sciatic Nerve Injury. Molecular Pain, 2008, 4, 1744-8069-4-25.	1.0	45
107	Peripheral Mechanisms of Neuropathic Pain — Involvement of Lysophosphatidic Acid Receptor-Mediated Demyelination. Molecular Pain, 2008, 4, 1744-8069-4-11.	1.0	112
108	Autotaxin, a Synthetic Enzyme of Lysophosphatidic Acid (LPA), Mediates the Induction of Nerve-Injured Neuropathic Pain. Molecular Pain, 2008, 4, 1744-8069-4-6.	1.0	94

#	Article	IF	CITATIONS
109	Synergistic Ca2+ and Cu2+ requirements of the FGF1–S100A13 interaction measured by quartz crystal microbalance: An initial step in amlexanox-reversible non-classical release of FGF1. Neurochemistry International, 2008, 52, 1076-1085.	1.9	14
110	Anti-Opioid Systems in Morphine Tolerance and Addiction-Locus-Specific Involvement of Nociceptin and the NMDA Receptor. Novartis Foundation Symposium, 2008, , 155-166.	1.2	8
111	Circadian-Dependent Learning and Memory Enhancement in Nociceptin Receptor-Deficient Mice with a Novel KUROBOX Apparatus Using Stress-Free Positive Cue Task. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 195-201.	1.3	20
112	Identification of prothymosin-α1, the necrosis–apoptosis switch molecule in cortical neuronal cultures. Journal of Cell Biology, 2007, 176, 853-862.	2.3	67
113	LPA-mediated demyelination in ex vivo culture of dorsal root. Neurochemistry International, 2007, 50, 351-355.	1.9	62
114	Evidence for the Tonic Inhibition of Spinal Pain by Nicotinic Cholinergic Transmission through Primary Afferents. Molecular Pain, 2007, 3, 1744-8069-3-41.	1.0	36
115	Loss of Spinal Substance P Pain Transmission under the Condition of LPAIReceptor-Mediated Neuropathic Pain. Molecular Pain, 2006, 2, 1744-8069-2-25.	1.0	38
116	Characterization of Three Different Sensory Fibers by use of Neonatal Capsaicin Treatment, Spinal Antagonism and a Novel Electrical Stimulation-Induced Paw Flexion Test. Molecular Pain, 2006, 2, 1744-8069-2-16.	1.0	38
117	Kyotorphin has a novel action on rat cardiac muscle. Biochemical and Biophysical Research Communications, 2006, 339, 805-809.	1.0	6
118	Evidence for serum-deprivation-induced co-release of FGF-1 and S100A13 from astrocytes. Neurochemistry International, 2006, 49, 294-303.	1.9	28
119	NSAID zaltoprofen possesses novel anti-nociceptive mechanism through blockage of B2-type bradykinin receptor in nerve endings. Neuroscience Letters, 2006, 397, 249-253.	1.0	20
120	Tonic inhibitory role of $\hat{l}\pm4\hat{l}^22$ subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain, 2006, 125, 125-135.	2.0	48
121	Voltage-Dependent N-Type Ca2+ Channel Activity Regulates the Interaction Between FGF-1 and S100A13 for Stress-Induced Non-Vesicular Release. Cellular and Molecular Neurobiology, 2006, 26, 237-246.	1.7	17
122	Molecular mechanisms of neuropathic pain–phenotypic switch and initiation mechanisms. , 2006, 109, 57-77.		216
123	Endocrine Disrupting Chemical Atrazine Causes Degranulation through Gq/11 Protein-Coupled Neurosteroid Receptor in Mast Cells. Toxicological Sciences, 2006, 90, 362-368.	1.4	41
124	Inhibition of Paclitaxel-Induced A-Fiber Hypersensitization by Gabapentin. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 735-740.	1.3	127
125	Novel type of Cq/11 protein-coupled neurosteroid receptor sensitive to endocrine disrupting chemicals in mast cell line (RBL-2H3). British Journal of Pharmacology, 2005, 145, 545-550.	2.7	26
126	Morphine-Induced Chemotaxis and Brain-Derived Neurotrophic Factor Expression in Microglia. Journal of Neuroscience, 2005, 25, 430-435.	1.7	83

#	Article	IF	CITATIONS
127	Insulin Receptor-Protein Kinase C-Î ³ Signaling Mediates Inhibition of Hypoxia-Induced Necrosis of Cortical Neurons. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1027-1034.	1.3	32
128	Morphine-induced overexpression of prepro-nociceptin/orphanin FQ in cultured astrocytes. Peptides, 2005, 26, 2513-2517.	1.2	14
129	Pre-Injury Administration of Morphine Prevents Development of Neuropathic Hyperalgesia through Activation of Descending Monoaminergic Mechanisms in the Spinal Cord in Mice. Molecular Pain, 2005, 1, 1744-8069-1-19.	1.0	8
130	Switching of Bradykinin-Mediated Nociception Following Partial Sciatic Nerve Injury in Mice. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1158-1164.	1.3	78
131	Loss of Peripheral Morphine Analgesia Contributes to the Reduced Effectiveness of Systemic Morphine in Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 380-387.	1.3	109
132	The Cognition-Enhancer Nefiracetam Inhibits Both Necrosis and Apoptosis in Retinal Ischemic Models in Vitro and in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 200-207.	1.3	12
133	Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nature Medicine, 2004, 10, 712-718.	15.2	480
134	Locus-Specific Involvement of Anti-Opioid Systems in Morphine Tolerance and Dependence. Annals of the New York Academy of Sciences, 2004, 1025, 376-382.	1.8	29
135	Cell Death Mode Switch from Necrosis to Apoptosis in Brain. Biological and Pharmaceutical Bulletin, 2004, 27, 950-955.	0.6	50
136	Novel Expression of Vanilloid Receptor 1 on Capsaicin-Insensitive Fibers Accounts for the Analgesic Effect of Capsaicin Cream in Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 940-948.	1.3	133
137	Increased Expression of Vanilloid Receptor 1 on Myelinated Primary Afferent Neurons Contributes to the Antihyperalgesic Effect of Capsaicin Cream in Diabetic Neuropathic Pain in Mice. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 709-717.	1.3	119
138	New approaches to study the development of morphine tolerance and dependence. Life Sciences, 2003, 74, 313-320.	2.0	41
139	Neurosteroid-induced hyperalgesia through a histamine release is inhibited by progesterone and p,p′-DDE, an endocrine disrupting chemical. Neurochemistry International, 2003, 42, 401-407.	1.9	16
140	The algogenic-induced nociceptive flexion test in mice: studies on sensitivity of the test and stress on animals. Brain Research Bulletin, 2003, 60, 275-281.	1.4	17
141	Emerging functions for tuberoinfundibular peptide of 39 residues. Trends in Endocrinology and Metabolism, 2003, 14, 14-19.	3.1	37
142	Nocistatin and Prepro-Nociceptin/Orphanin FQ 160–187 Cause Nociception through Activation of Gi/oin Capsaicin-Sensitive and of Gsin Capsaicin-Insensitive Nociceptors, Respectively. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 141-146.	1.3	17
143	In Vivo Pain-Inhibitory Role of Nociceptin/Orphanin FQ in Spinal Cord. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 495-501.	1.3	29
144	Neuronal Necrosis Inhibition by Insulin through Protein Kinase C Activation. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 205-212.	1.3	23

#	Article	IF	CITATIONS
145	Locus-Specific Rescue of GluRïµ1 NMDA Receptors in Mutant Mice Identifies the Brain Regions Important for Morphine Tolerance and Dependence. Journal of Neuroscience, 2003, 23, 6529-6536.	1.7	108
146	Molecular mechanism of neuropathic pain. Drug News and Perspectives, 2003, 16, 605.	1.9	29
147	Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1651-1656.	3.3	69
148	Nonopioid and Neuropathy-Specific Analgesic Action of the Nootropic Drug Nefiracetam in Mice. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 226-231.	1.3	30
149	The cognition-enhancer nefiracetam is protective in BDNF-independent neuronal cell death under the serum-free condition. Neurochemistry International, 2002, 40, 139-143.	1.9	9
150	Stimulation of peripheral nociceptor endings by low dose morphine and its signaling mechanism. Neurochemistry International, 2002, 41, 399-407.	1.9	20
151	Neuropathy-specific analgesic action of intrathecal nicotinic agonists and its spinal GABA-mediated mechanism. Brain Research, 2002, 953, 53-62.	1.1	73
152	Downregulation of P2X3receptor-dependent sensory functions in A/J inbred mouse strain. European Journal of Neuroscience, 2002, 15, 1444-1450.	1.2	29
153	A Subtype of κ-Opioid Receptor Mediates Inhibition of High-Affinity CTPase Inherent in Gi1 in Guinea Pig Cerebellar Membranes. Journal of Neurochemistry, 2002, 66, 845-851.	2.1	9
154	Neurosteroids stimulate G protein-coupled sigma receptors in mouse brain synaptic membrane. Neuroscience Research, 2001, 41, 33-40.	1.0	39
155	Protein Kinase C-Mediated Inhibition of μ-Opioid Receptor Internalization and Its Involvement in the Development of Acute Tolerance to Peripheral μ-Agonist Analgesia. Journal of Neuroscience, 2001, 21, 2967-2973.	1.7	64
156	Neurobiology of the Edg2 Lysophosphatidic Acid Receptor. The Japanese Journal of Pharmacology, 2001, 87, 104-109.	1.2	13
157	Cell density-dependent death mode switch of cultured cortical neurons under serum-free starvation stress. Cellular and Molecular Neurobiology, 2001, 21, 317-324.	1.7	29
158	Botulinum Toxin C3 Inhibits Hyperalgesia in Mice With Partial Sciatic Nerve Injury The Japanese Journal of Pharmacology, 2000, 83, 161-163.	1.2	12
159	Enhanced nociception by exogenous and endogenous substance P given into the spinal cord in mice lacking NR2 A∫iµ1 , an NMDA receptor subunit. British Journal of Pharmacology, 2000, 129, 239-241.	2.7	4
160	(-)1-(Benzofuran-2-yl)-2-propylaminopentane shows survival effect on cortical neurons under serum-free condition through sigma receptors. Cellular and Molecular Neurobiology, 2000, 20, 695-702.	1.7	17
161	Enhanced Spinal Nociceptin Receptor Expression Develops Morphine Tolerance and Dependence. Journal of Neuroscience, 2000, 20, 7640-7647.	1.7	113
162	Gi1and GoAdifferentially determine kinetic efficacies of agonists for κ-opioid receptor. FEBS Letters, 2000, 473, 101-105.	1.3	12

#	Article	IF	CITATIONS
163	Serum-free induced neuronal apoptosis-like cell death is independent of caspase activity. Molecular Brain Research, 2000, 78, 186-191.	2.5	24
164	Vzg-1/lysophosphatidic acid-receptor involved in peripheral pain transmission. Molecular Brain Research, 2000, 75, 350-354.	2.5	49
165	An enzymatically stable kyotorphin analog induces pain in subattomol dosesâ~†. Peptides, 2000, 21, 717-722.	1.2	9
166	Complete inhibition of purinoceptor agonist-induced nociception by spinorphin, but not by morphine. Peptides, 2000, 21, 1215-1221.	1.2	39
167	Binding of [35S]GTPÎ ³ S stimulated by (+)-pentazocine, sigma receptor agonist, is abundant in the guinea pig spleen. Life Sciences, 2000, 67, 599-603.	2.0	14
168	Nociceptin-induced scratching, biting and licking in mice: involvement of spinal NK1 receptors. British Journal of Pharmacology, 1999, 127, 1712-1718.	2.7	57
169	Differential involvement of μ-opioid receptor subtypes in endomorphin-1- and -2-induced antinociception. European Journal of Pharmacology, 1999, 372, 25-30.	1.7	111
170	Peripheral morphine analgesia resistant to tolerance in chronic morphine-treated mice. Neuroscience Letters, 1999, 266, 105-108.	1.0	20
171	Selective coupling of mouse brain metabotropic sigma (σ) receptor with recombinant Gi1. Neuroscience Letters, 1999, 268, 85-88.	1.0	18
172	Lysophosphatidic acid-induced, pertussis toxin-sensitive nociception through a substance P release from peripheral nerve endings in mice. Neuroscience Letters, 1999, 270, 59-61.	1.0	59
173	Low dose of kyotorphin (tyrosine–arginine) induces nociceptive responses through a substance P release from nociceptor endings. Molecular Brain Research, 1999, 69, 302-305.	2.5	8
174	Activation of Gi1by Lysophosphatidic Acid Receptor without Ligand in the Baculovirus Expression System. Biochemical and Biophysical Research Communications, 1999, 259, 78-84.	1.0	24
175	Antiamnesic action of cromakalim, a potassium channel opener, in mice treated with hypoxia- and cerebral ischemia-type stress stimuli. Cellular and Molecular Neurobiology, 1998, 18, 429-436.	1.7	2
176	In vivo signal transduction of tetrodotoxin-sensitive nociceptive responses by substance P given into the planta of the mouse hind limb. Cellular and Molecular Neurobiology, 1998, 18, 555-561.	1.7	15
177	Low-density induced apoptosis of cortical neurons is inhibited by serum factors. Cellular and Molecular Neurobiology, 1998, 18, 487-496.	1.7	18
178	Attempts to Classify Dependence-Liable Drugs by Using a Simple Drug-Discrimination Test in Mice. General Pharmacology, 1998, 30, 697-700.	0.7	2
179	Signaling of lysophosphatidic acid-evoked chloride current: calcium release from inositol trisphosphate-sensitive store. Molecular Brain Research, 1998, 61, 232-237.	2.5	10
180	Parallel Stimulations of in Vitro and in Situ [35S]GTPγS Binding by Endomorphin 1 and DAMGO in Mouse Brains. Peptides, 1998, 19, 755-758.	1.2	13

#	Article	IF	CITATIONS
181	Melittin, a Metabostatic Peptide Inhibiting Gs Activity. Peptides, 1998, 19, 811-819.	1.2	35
182	Aripiprazole, a novel antipsychotic drug, inhibits quinpriole-evoked GTPase activity but does not up-regulate dopamine D2 receptor following repeated treatment in the rat striatum. European Journal of Pharmacology, 1997, 321, 105-111.	1.7	100
183	Sigma ligands stimulate GTPase activity in mouse prefrontal membranes: evidence for the existence of metabotropic sigma receptor. Neuroscience Letters, 1997, 233, 141-144.	1.0	24
184	Peripheral non-opioid analgesic effects of kyotorphin in mice. Neuroscience Letters, 1997, 236, 60-62.	1.0	25
185	Characterization of nociceptin-stimulated in situ [35S]GTPÎ ³ S binding in comparison with opioid agonist-stimulated ones in brain regions of the mice. Neuroscience Letters, 1997, 237, 113-116.	1.0	34
186	Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neuroscience Letters, 1997, 237, 136-138.	1.0	131
187	Multiple Forms of AMPA-Type Glutamate Receptor mRNA Phenotypes in Goldfish Retina and Tectum. General Pharmacology, 1997, 29, 575-581.	0.7	6
188	Inositol 1,4,5-Trisphosphate-Gated Calcium Transport through Plasma Membranes in Nerve Terminals. Journal of Neuroscience, 1996, 16, 2891-2900.	1.7	30
189	Neurotransmitter-like Actions of L-DOPA. Advances in Pharmacology, 1995, 32, 427-459.	1.2	50
190	ALTERED BASAL RELEASE AND DEPRESSOR EFFECT OF L-DOPA IN THE NUCLEUS TRACTUS SOLITARII OF SPONTANEOUSLY HYPERTENSIVE RATS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, S34-S36.	0.9	3
191	ALTERED BASAL RELEASE AND PRESSOR EFFECT OF L-DOPA IN THE ROSTRAL VENTROLATERAL MEDULLA OF SPONTANEOUSLY HYPERTENSIVE RATS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, S43-S45.	0.9	2
192	l-DOPA inhibits spontaneous acetylcholine release from the striatum of experimental Parkinson's model rats. Brain Research, 1995, 698, 213-216.	1.1	31
193	Opioid μ- and κ-receptor mediate phospholipase C activation through Gi1 in Xenopus oocytes. Molecular Brain Research, 1995, 32, 166-170.	2.5	34
194	Protein kinase C inhibitor potentiates the agonist-induced GTPase activity in COS cell membranes expressing δ-opioid receptor. Molecular Brain Research, 1995, 33, 347-350.	2.5	4
195	Down-regulation of AMPA-type glutamate receptor gene expression during goldfish optic nerve regeneration. Molecular Brain Research, 1995, 32, 151-155.	2.5	7
196	A subtype of opioid κ-receptor is coupled to inhibition of Gil-mediated phospholipase C activity in the guinea pig cerebellum. FEBS Letters, 1995, 361, 106-110.	1.3	18
197	Evidence for a metabostatic opioid ϰ-receptor inhibiting pertussis toxin-sensitive metabotropic glutamate receptor-currents inXenopusoocytes. FEBS Letters, 1995, 375, 201-205.	1.3	9
198	Non-effective dose of exogenously applied l-DOPA itself stereoselectively potentiates postsynaptic D2 receptor-mediated locomotor activities of conscious rats. Neuroscience Letters, 1994, 170, 22-26.	1.0	47

#	Article	IF	CITATIONS
199	Species and age-dependent differences of functional coupling between opioid δ-receptor and G-proteins and possible involvement of protein kinase C in striatal membranes. Neuroscience Letters, 1994, 176, 55-58.	1.0	16
200	Endogenously released l-DOPA itself tonically functions to potentiate postsynaptic D2 receptor-mediated locomotor activities of conscious rats. Neuroscience Letters, 1994, 170, 107-110.	1.0	41
201	Supersensitivity of quinpirole-evoked GTPase activation without changes in gene expression of D2 and Gi protein in the striatum of hemi-dopaminergic lesioned rats. Neuroscience Letters, 1994, 175, 107-110.	1.0	11
202	Supersensitization of intrastriatal dopamine receptors involved in opposite regulation of acetylcholine release in Parkinson's model rats. Neuroscience Letters, 1994, 173, 59-62.	1.0	23
203	Protein kinase inhibitor potentiates opioid δ-receptor currents in Xenopus oocytes. NeuroReport, 1994, 5, 1985-1988.	0.6	19
204	δOpioid receptor mediates phospholipase C activation via GiinXenopusoocytes. FEBS Letters, 1993, 333, 311-314.	1.3	48
205	Functional Reconstitution of Purified Giand Gowith ?-Opioid Receptors in Guinea Pig Striatal Membranes Pretreated with Micromolar Concentrations of N-Ethylmaleimide. Journal of Neurochemistry, 1990, 54, 841-848.	2.1	64
206	κ-Opioid agonist inhibits phospholipase C, possibly via an inhibition of G-protein activity. Neuroscience Letters, 1990, 112, 324-327.	1.0	30
207	Phosphorylated μ-opioid receptor purified from rat brains lacks functional coupling with Gi1, a GTP-binding protein in reconstituted lipid vesicles. Neuroscience Letters, 1990, 113, 47-49.	1.0	42
208	Evidence for receptor-mediated inhibition of intrinsic activity of GTP-binding protein, Gi1 and Gi2, but not G0in reconstitution experiments. FEBS Letters, 1990, 266, 178-182.	1.3	27
209	µ-Opioid Receptor. , 1990, , 115-129.		1
210	The effect of polysorbate 80 on brain uptake and analgesic effect of D-kyotorphin. International Journal of Pharmaceutics, 1989, 57, 77-83.	2.6	29
211	Phosphorylation of μ-opioid receptors — a putative mechanism of selective uncoupling of receptor — Gi interaction, measured with low-Km CTPase and nucleotide-sensitive agonist binding. Neuroscience Letters, 1989, 100, 221-226.	1.0	34
212	Reconstitution of opioid receptor and GTP-binding protein Seibutsu Butsuri, 1989, 29, 346-350.	0.0	0
213	Endogenous GABA released into the fourth ventricle of the rat brain in vivo is enhanced by noxious stimuli. Neuroscience Letters, 1988, 92, 76-81.	1.0	9
214	Calcium-activated neutral protease (CANP), a putative processing enzyme of the neuropeptide, kyotorphin, in the brain. Biochemical and Biophysical Research Communications, 1988, 155, 546-553.	1.0	14
215	Involvement of kyotorphin and kyotorphin synthetase in the pain modulation. The Japanese Journal of Pharmacology, 1988, 46, 248.	1.2	3
216	The specific opioid κ-agonist U-50,488H inhibits low Km GTPase. European Journal of Pharmacology, 1987, 138, 129-132.	1.7	25

#	Article	IF	CITATIONS
217	Subconvulsive doses of intracisternal bicuculline methiodide, a GABAA receptor antagonist, produce potent analgesia as measured in the tail pinch test in mice. European Journal of Pharmacology, 1987, 136, 129-131.	1.7	13
218	Excess release of substance P from the spinal cord of mice during morphine withdrawal and involvement of the enhancement of presynaptic Ca2+ entry. Brain Research, 1987, 425, 101-105.	1.1	21
219	A Met-enkephalin releaser (kyotorphin)-induced release of plasma membrane-bound Ca2+ from rat brain synaptosomes. Brain Research, 1987, 419, 197-200.	1.1	6
220	A novel proenkephalin processing carboxypeptidase and its activation by cyclic AMP dependent protein kinase. Biochemical and Biophysical Research Communications, 1987, 142, 595-602.	1.0	5
221	Non-opioid analgesia of the neuropeptide, neo-kyotorphin and possible mediation by inhibition of GABA release in the mouse brain. Peptides, 1987, 8, 905-909.	1.2	17
222	Presynaptic opioid κ-receptor and regulation of the release of Met-enkephalin in the rat brainstem. Neuroscience Letters, 1987, 81, 309-313.	1.0	20
223	Purified opioid μ-receptor is of a different molecular size than δ- and κ-receptors. Neuroscience Letters, 1987, 75, 339-344.	1.0	26
224	A novel method for the synthesis of kyotorphin, Tyr-Arg, and 3H-Tyr-Arg, catalyzed by tyrosyl-tRNA synthetase from Bacillus stearothermophilus. Pharmaceutical Research, 1987, 04, 154-157.	1.7	14
225	A putative met-enkephalin releaser, kyotorphin enhances intracellular Ca2+ in the synaptosomes. Biochemical and Biophysical Research Communications, 1986, 137, 897-902.	1.0	26
226	Pertussis toxin (IAP) enhances maitotoxin (a putative Ca2+ channel agonist)-induced Ca2+ entry into synaptosomes. European Journal of Pharmacology, 1986, 122, 379-380.	1.7	23
227	Uptake and release of kyotorphin in rat brain synaptosomes. Life Sciences, 1986, 38, 2405-2411.	2.0	19
228	Diminished α2-adrenoceptor-mediated modulation of noradrenergic neurotransmission in the posterior hypothalamus of spontaneously hypertensive rats. Neuroscience Letters, 1986, 65, 29-34.	1.0	9
229	The maitotoxin-evoked Ca2+ entry into synaptosomes is enhanced by cholera toxin. Neuroscience Letters, 1986, 67, 141-146.	1.0	18
230	Low doses of naloxone produce analgesia in the mouse brain by blocking presynaptic autoinhibition of enkephalin release. Neuroscience Letters, 1986, 65, 247-252.	1.0	116
231	Involvement of GABA in the analgesic mechanisms of opioids and neo-kyotorphin (non-opioid analgesic) Tj ETQq1	1,0.7843 1.2	14 rgBT /Ov
232	Identification and characterization of kyotorphin synthetase. The Japanese Journal of Pharmacology, 1986, 40, 219.	1.2	2
233	Adrenaline involvement in the presynaptic β-adrenoceptor-mediated mechanism of dopamine release from slices of the rat hypothalamus. Life Sciences, 1984, 34, 1087-1093.	2.0	17
234	Effects of yohimbine on endogenous noradrenaline release from hypothalamus and brainstem slices of spontaneously hypertensive rats The Japanese Journal of Pharmacology, 1984, 36, 416-418.	1.2	4

#	Article	IF	CITATIONS
235	Presynaptic α2- and dopamine-receptor-mediated inhibitory mechanisms and dopamine nerve terminals in the rat hypothalamus. Neuroscience Letters, 1983, 40, 157-162.	1.0	24
236	Presynaptic mediation by α2-, β1- and β2-adrenoceptors of endogenous noradrenaline and dopamine release from slices of rat hypothalamus. Life Sciences, 1983, 33, 371-376.	2.0	67
237	Analgesic dipeptide, kyotorphin (Tyr-Arg), is highly concentrated in the synaptosomal fraction of the rat brain. Brain Research, 1982, 231, 222-224.	1.1	33
238	Mechanism of kyotorphin-induced release of Met-enkephalin from guinea pig striatum and spinal cord. Brain Research, 1981, 221, 161-169.	1.1	67
239	Studies on peptides. XCIV. Synthesis and activity of kyotorphin and its analogs Chemical and Pharmaceutical Bulletin, 1980, 28, 1935-1938.	0.6	18
240	Regional distribution of a novel analgesic dipeptide kyotorphin (Tyr-Arg) in the rat brain and spinal cord. Brain Research, 1980, 198, 460-464.	1.1	74
241	A novel analgesic dipeptide from bovine brain is a possible Met-enkephalin releaser. Nature, 1979, 282, 410-412.	13.7	260
242	Comparison of the analgesic effects of various opioid peptides by a newly devised intracisternal injection technique in conscious mice. European Journal of Pharmacology, 1979, 56, 265-268.	1.7	130
243	Morphine-like analgesia by a new dipeptide, L-Tyrosyl-L-Arginine (kyotorphin) and its analogue. European Journal of Pharmacology, 1979, 55, 109-111.	1.7	171
244	Pain and the bulbospinal noradrenergic system: pain-induced increase in normetanephrine content in the spinal cord and its modification by morphine. European Journal of Pharmacology, 1979, 54, 99-107.	1.7	59