List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6224164/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society<br>Reviews, 2014, 43, 7067-7098.                                                                                                                                                                         | 38.1 | 1,547     |
| 2  | Ti <sub>3</sub> C <sub>2</sub> T <sub>X</sub> MXene for Sensing Applications: Recent Progress, Design<br>Principles, and Future Perspectives. ACS Nano, 2021, 15, 3996-4017.                                                                                                                           | 14.6 | 361       |
| 3  | Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multiâ€Walled Carbon<br>Nanotubes for Solid‧tate, Flexible, Asymmetric Supercapacitors. Angewandte Chemie - International<br>Edition, 2015, 54, 4651-4656.                                                                     | 13.8 | 334       |
| 4  | Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO<br>(rGO–ZnO) hybrid nanostructure. Journal of Materials Chemistry, 2012, 22, 2589-2595.                                                                                                                        | 6.7  | 285       |
| 5  | Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State<br>Supercapacitor. ACS Nano, 2017, 11, 444-452.                                                                                                                                                           | 14.6 | 216       |
| 6  | High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene for the Monitoring of Human Activities.<br>ACS Nano, 2021, 15, 9690-9700.                                                                                       | 14.6 | 191       |
| 7  | Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochemistry Communications, 2015, 51, 33-36.                                                                                                                        | 4.7  | 169       |
| 8  | A Solid‣tate Fibriform Supercapacitor Boosted by Host–Guest Hybridization between the Carbon<br>Nanotube Scaffold and MXene Nanosheets. Small, 2018, 14, e1801203.                                                                                                                                     | 10.0 | 158       |
| 9  | Electrostatically Assembling 2D Nanosheets of MXene and MOFâ€Derivatives into 3D Hollow<br>Frameworks for Enhanced Lithium Storage. Small, 2019, 15, e1904255.                                                                                                                                         | 10.0 | 138       |
| 10 | Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning<br>Acoustic Sensors. ACS Nano, 2019, 13, 13293-13303.                                                                                                                                                 | 14.6 | 122       |
| 11 | Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and<br>Transitionâ€Metal Dichalcogenides and their Application as Supercapacitors. Angewandte Chemie -<br>International Edition, 2014, 53, 12576-12580.                                                          | 13.8 | 119       |
| 12 | Polyaniline-Decorated Supramolecular Hydrogel with Tough, Fatigue-Resistant, and Self-Healable<br>Performances for All-In-One Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12,<br>9736-9745.                                                                                    | 8.0  | 119       |
| 13 | All-Graphene-Based Highly Flexible Noncontact Electronic Skin. ACS Applied Materials &<br>Interfaces, 2017, 9, 44593-44601.                                                                                                                                                                            | 8.0  | 110       |
| 14 | Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1, 156-160.                                                                                                                       | 8.0  | 99        |
| 15 | Rational Design of a Flexible CNTs@PDMS Film Patterned by Bioâ€Inspired Templates as a Strain Sensor<br>and Supercapacitor. Small, 2019, 15, e1805493.                                                                                                                                                 | 10.0 | 91        |
| 16 | Singleâ€Step Selective Laser Writing of Flexible Photodetectors for Wearable Optoelectronics.<br>Advanced Science, 2018, 5, 1800496.                                                                                                                                                                   | 11.2 | 87        |
| 17 | Constructing a Low-Impedance Interface on a High-Voltage<br>LiNi <sub>0.8</sub> Co <sub>0.1</sub> Mn <sub>0.1</sub> O <sub>2</sub> Cathode with 2,4,6-Triphenyl<br>Boroxine as a Film-Forming Electrolyte Additive for Li-Ion Batteries. ACS Applied Materials &<br>Interfaces. 2020, 12, 37013-37026. | 8.0  | 86        |
| 18 | Stabilizing LiCoO <sub>2</sub> /Graphite at High Voltages with an Electrolyte Additive. ACS Applied<br>Materials & Interfaces, 2019, 11, 17940-17951.                                                                                                                                                  | 8.0  | 83        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination. Sensors and Actuators B: Chemical, 2018, 257, 23-28.           | 7.8  | 80        |
| 20 | Tuning Array Morphology for Highâ€Strength Carbonâ€Nanotube Fibers. Small, 2010, 6, 132-137.                                                                                                                                  | 10.0 | 79        |
| 21 | Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on<br>indium tin oxide nanotubes. Sensors and Actuators B: Chemical, 2018, 265, 273-284.                                            | 7.8  | 77        |
| 22 | Electrochemically Mediated Surface-Initiated de Novo Growth of Polymers for Amplified Electrochemical Detection of DNA. Analytical Chemistry, 2017, 89, 9253-9259.                                                            | 6.5  | 73        |
| 23 | Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries.<br>EScience, 2022, 2, 405-415.                                                                                              | 41.6 | 70        |
| 24 | Dual-Function Metal–Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage.<br>ACS Applied Materials & Interfaces, 2018, 10, 2837-2842.                                                                   | 8.0  | 68        |
| 25 | Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances.<br>Journal of Materials Chemistry B, 2019, 7, 1708-1715.                                                                    | 5.8  | 68        |
| 26 | Preparation of Weavable, Allâ€Carbon Fibers for Nonâ€Volatile Memory Devices. Angewandte Chemie -<br>International Edition, 2013, 52, 13351-13355.                                                                            | 13.8 | 67        |
| 27 | Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. Journal of Materials Chemistry A, 2017, 5, 2483-2487.                               | 10.3 | 66        |
| 28 | Highly Concentrated, Ultrathin Nickel Hydroxide Nanosheet Ink for Wearable Energy Storage Devices.<br>Advanced Materials, 2017, 29, 1703455.                                                                                  | 21.0 | 62        |
| 29 | Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors. Nanoscale, 2019, 11, 2492-2500.                                                                                   | 5.6  | 62        |
| 30 | Oxygen vacancy enriched hollow cobaltosic oxide frames with ultrathin walls for efficient energy storage and biosensing. Nanoscale, 2018, 10, 21006-21012.                                                                    | 5.6  | 60        |
| 31 | Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale, 2018, 10, 118-123.                                                                                             | 5.6  | 58        |
| 32 | Microfiber devices based on carbon materials. Materials Today, 2015, 18, 215-226.                                                                                                                                             | 14.2 | 57        |
| 33 | Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. Small Methods, 2020, 4, 1900824.                                                                                                           | 8.6  | 56        |
| 34 | ldentifying the active site of ultrathin NiCo LDH as an efficient peroxidase mimic with superior<br>substrate affinity for sensitive detection of hydrogen peroxide. Journal of Materials Chemistry B,<br>2019, 7, 6232-6237. | 5.8  | 55        |
| 35 | A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects. Applied Physics Letters, 2012, 101, .                                                                 | 3.3  | 52        |
| 36 | Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays. Journal of Solid State Electrochemistry, 2012, 16, 1775-1780.                                                                    | 2.5  | 52        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. Nanoscale, 2018, 10,<br>5442-5448.                                                                                                                  | 5.6  | 50        |
| 38 | Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 26540-26548.                                                                         | 10.3 | 48        |
| 39 | Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. Carbon, 2020, 157, 106-112.                                                          | 10.3 | 48        |
| 40 | Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward Highâ€Performance<br>Weaveable/Wearable Supercapacitors. Small, 2020, 16, e2000653.                                                                         | 10.0 | 48        |
| 41 | Actuation triggered exfoliation of graphene oxide at low temperature for electrochemical capacitor applications. Carbon, 2014, 68, 748-754.                                                                                           | 10.3 | 47        |
| 42 | Weavable, Highâ€Performance, Solidâ€State Supercapacitors Based on Hybrid Fibers Made of Sandwiched<br>Structure of MWCNT/rGO/MWCNT. Advanced Electronic Materials, 2016, 2, 1600102.                                                 | 5.1  | 47        |
| 43 | Constructing optimized three-dimensional electrochemical interface in carbon nanofiber/carbon nanotube hierarchical composites for high-energy-density supercapacitors. Carbon, 2017, 111, 502-512.                                   | 10.3 | 47        |
| 44 | Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Mikrochimica Acta, 2014, 181, 63-70.                                                                   | 5.0  | 46        |
| 45 | Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for<br>lithium–sulfur batteries. Chemical Engineering Journal, 2020, 392, 123734.                                                        | 12.7 | 45        |
| 46 | Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygen ontaining Groups. Advanced Functional Materials, 2022, 32, .                                             | 14.9 | 45        |
| 47 | Direct storage of holes in ultrathin Ni(OH) <sub>2</sub> on Fe <sub>2</sub> O <sub>3</sub><br>photoelectrodes for integrated solar charging battery-type supercapacitors. Journal of Materials<br>Chemistry A, 2018, 6, 21360-21367.  | 10.3 | 44        |
| 48 | Ammonium Intercalation Induced Expanded 1T-Rich Molybdenum Diselenides for Improved Lithium Ion<br>Storage. ACS Applied Materials & Interfaces, 2021, 13, 17459-17466.                                                                | 8.0  | 42        |
| 49 | Load-transfer efficiency and mechanical reliability of carbon nanotube fibers under low strain rates.<br>International Journal of Plasticity, 2013, 40, 56-64.                                                                        | 8.8  | 41        |
| 50 | Robust wire-based supercapacitors based on hierarchical α-MoO 3 nanosheet arrays with well-aligned<br>laminated structure. Chemical Engineering Journal, 2017, 320, 34-42.                                                            | 12.7 | 41        |
| 51 | In Situ Fabrication of Ni <sub>2</sub> P Nanoparticles Embedded in Nitrogen and Phosphorus Codoped<br>Carbon Nanofibers as a Superior Anode for Li-Ion Batteries. ACS Sustainable Chemistry and<br>Engineering, 2018, 6, 14795-14801. | 6.7  | 41        |
| 52 | Deciphering the catalysis essence of vanadium self-intercalated two-dimensional vanadium sulfides<br>(V5S8) on lithium polysulfide towards high-rate and ultra-stable Li-S batteries. Energy Storage<br>Materials, 2021, 43, 471-481. | 18.0 | 38        |
| 53 | Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes. Nanoscale, 2013, 5, 2870.                                                                                                                           | 5.6  | 37        |
| 54 | The incorporation of expanded 1T-enriched MoS2 boosts hybrid fiber improved charge storage capability. Carbon, 2020, 170, 543-549.                                                                                                    | 10.3 | 35        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Reliable and Large Curvature Actuation from Gradient-Structured Graphene Oxide. Journal of Physical<br>Chemistry C, 2011, 115, 23741-23744.                                                                                                     | 3.1  | 34        |
| 56 | Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips.<br>Nanoscale, 2011, 3, 4854.                                                                                                                      | 5.6  | 34        |
| 57 | Design of Vertically Aligned Two-Dimensional Heterostructures of Rigid<br>Ti <sub>3</sub> C <sub>2</sub> T <sub>X</sub> MXene and Pliable Vanadium Pentoxide for Efficient<br>Lithium Ion Storage. ACS Nano, 2022, 16, 5556-5565.               | 14.6 | 33        |
| 58 | Tough, Transparent, and Anti-Freezing Nanocomposite Organohydrogels with Photochromic Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 31180-31192.                                                                               | 8.0  | 32        |
| 59 | Recent Advances in Molybdenum-Based Materials for Lithium-Sulfur Batteries. Research, 2021, 2021, 5130420.                                                                                                                                      | 5.7  | 31        |
| 60 | Universal Strategy for Preparing Highly Stable PBA/Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub><br>MXene toward Lithium-Ion Batteries <i>via</i> Chemical Transformation. ACS Applied Materials &<br>Interfaces, 2022, 14, 15298-15306. | 8.0  | 30        |
| 61 | Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage. Nanoscale, 2020, 12, 11112-11118.                                                | 5.6  | 29        |
| 62 | Elastic organic crystals with ultralong phosphorescence for flexible anti-counterfeiting. Npj Flexible<br>Electronics, 2021, 5, .                                                                                                               | 10.7 | 29        |
| 63 | Hybrid fibers assembled from MoSe2/graphene heterostructures endow improved supercapacitive performance. Carbon, 2022, 187, 165-172.                                                                                                            | 10.3 | 29        |
| 64 | Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 5131-5134.                                                         | 4.1  | 28        |
| 65 | Solution-Processed Sensing Textiles with Adjustable Sensitivity and Linear Detection Range Enabled by Twisting Structure. ACS Applied Materials & Interfaces, 2020, 12, 12155-12164.                                                            | 8.0  | 28        |
| 66 | Energy storage mechanism in aqueous fiber-shaped Li-ion capacitors based on aligned<br>hydrogenated-Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> nanowires. Nanoscale, 2017, 9, 8192-8199.                                                   | 5.6  | 26        |
| 67 | Twist induced plasticity and failure mechanism of helical carbon nanotube fibers under different strain rates. International Journal of Plasticity, 2018, 110, 74-94.                                                                           | 8.8  | 26        |
| 68 | Assembling laminated films <i>via</i> the synchronous reduction of graphene oxide and formation of copper-based metal organic frameworks. Journal of Materials Chemistry A, 2019, 7, 107-111.                                                   | 10.3 | 26        |
| 69 | Jahn–Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey<br>NiMn-hydroxide nanosheets for flexible energy storage devices. Nanoscale, 2020, 12, 22075-22081.                                                  | 5.6  | 26        |
| 70 | Ultrastable lithium–sulfur batteries with outstanding rate capability boosted by NiAs-type vanadium sulfides. Journal of Materials Chemistry A, 2020, 8, 18358-18366.                                                                           | 10.3 | 26        |
| 71 | Tough Interfacial Adhesion of Bilayer Hydrogels with Integrated Shape Memory and Elastic Properties<br>for Controlled Shape Deformation. ACS Applied Materials & Interfaces, 2021, 13, 10457-10466.                                             | 8.0  | 26        |
| 72 | Solutionâ€Processable Design of Fiberâ€Shaped Wearable Zn//Ni(OH) <sub>2</sub> Battery. Energy<br>Technology, 2018, 6, 2326-2332.                                                                                                               | 3.8  | 24        |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | One-pot sulfur-containing ion assisted microwave synthesis of reduced graphene oxide@nano-sulfur fibrous hybrids for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 325, 134920.                                                    | 5.2  | 24        |
| 74 | General Metal-Ion Mediated Method for Functionalization of Graphene Fiber. ACS Applied Materials<br>& Interfaces, 2017, 9, 37022-37030.                                                                                                                    | 8.0  | 23        |
| 75 | Ultrathin NiMn layered double hydroxide nanosheets with a superior peroxidase mimicking<br>performance to natural HRP for disposable paper-based bioassays. Journal of Materials Chemistry B,<br>2021, 9, 983-991.                                         | 5.8  | 22        |
| 76 | Polarization behaviors of twisted carbon nanotube fibers. Journal of Raman Spectroscopy, 2012, 43, 1221-1226.                                                                                                                                              | 2.5  | 21        |
| 77 | Dissymmetric interface design of SnO2/TiO2 side-by-side bi-component nanofibers as photoanodes for dye sensitized solar cells: Facilitated electron transport and enhanced carrier separation. Journal of Colloid and Interface Science, 2021, 583, 24-32. | 9.4  | 21        |
| 78 | Probing structure and strain transfer in dry-spun carbon nanotube fibers by depth-profiled Raman spectroscopy. Applied Physics Letters, 2013, 103, .                                                                                                       | 3.3  | 20        |
| 79 | Engineering the Li Storage Properties of Graphene Anodes: Defect Evolution and Pore Structure Regulation. ACS Applied Materials & Interfaces, 2016, 8, 33712-33722.                                                                                        | 8.0  | 20        |
| 80 | "Rose Flowers―assembled from mesoporous NiFe2O4 nanosheets for energy storage devices. Journal<br>of Materials Science: Materials in Electronics, 2017, 28, 14058-14068.                                                                                   | 2.2  | 20        |
| 81 | Effect of TiO <sub>2</sub> -rGO heterojunction on electron collection efficiency and mechanical properties of fiber-shaped dye-sensitized solar cells. Journal Physics D: Applied Physics, 2019, 52, 095502.                                               | 2.8  | 20        |
| 82 | Tunable white light emission by variation of composition and defects of electrospun<br>Al <sub>2</sub> O <sub>3</sub> –SiO <sub>2</sub> nanofibers. Beilstein Journal of Nanotechnology,<br>2015, 6, 313-320.                                              | 2.8  | 19        |
| 83 | A Capacitorâ€ŧype Faradaic Junction for Direct Solar Energy Conversion and Storage. Angewandte<br>Chemie - International Edition, 2021, 60, 1390-1395.                                                                                                     | 13.8 | 19        |
| 84 | Mesh-like vertical structures enable both high areal capacity and excellent rate capability. Journal of Energy Chemistry, 2021, 53, 226-233.                                                                                                               | 12.9 | 18        |
| 85 | Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid<br>Junctions. IScience, 2020, 23, 100949.                                                                                                                | 4.1  | 17        |
| 86 | Amorphous phase induced high phosphorous-doping in dandelion-like cobalt sulfides for enhanced battery-supercapacitor hybrid device. Journal of Electroanalytical Chemistry, 2021, 889, 115231.                                                            | 3.8  | 17        |
| 87 | Interface/defect-tuneable macro and micro photoluminescence behaviours of trivalent europium ions<br>in electrospun ZrO <sub>2</sub> /ZnO porous nanobelts. Physical Chemistry Chemical Physics, 2017, 19,<br>9223-9231.                                   | 2.8  | 16        |
| 88 | A facile grinding approach to embed red phosphorus in N,P-codoped hierarchical porous carbon for superior lithium storage. Science China Materials, 2020, 63, 55-61.                                                                                       | 6.3  | 16        |
| 89 | Near-infrared responsive shape memory hydrogels with programmable and complex shape-morphing.<br>Science China Technological Sciences, 2021, 64, 1752-1764.                                                                                                | 4.0  | 15        |
| 90 | Stiffness Engineering of Ti <sub>3</sub> C <sub>2</sub> T <i><sub>X</sub></i> MXeneâ€Based Skinâ€Inspired<br>Pressure Sensor with Broadâ€Range Ultrasensitivity, Low Detection Limit, and Gas Permeability.<br>Advanced Materials Interfaces, 2022, 9, .   | 3.7  | 15        |

| #   | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Trench structure assisted alignment in ultralong and dense carbon nanotube arrays. Journal of<br>Materials Chemistry C, 2015, 3, 2215-2222.                                                                                                                       | 5.5  | 14        |
| 92  | Hierarchically tubular architectures composed of vertical carbon nanosheets embedded with<br>oxygen-vacancy enriched hollow Co3O4 nanoparticles for improved energy storage. Electrochimica<br>Acta, 2020, 356, 136843.                                           | 5.2  | 14        |
| 93  | The Jahn-Teller Effect for Amorphization of Molybdenum Trioxide towards High-Performance Fiber Supercapacitor. Research, 2021, 2021, 6742715.                                                                                                                     | 5.7  | 14        |
| 94  | Construction of all-carbon micro/nanoscale interconnected sulfur host for high-rate and<br>ultra-stable lithium-sulfur batteries: Role of oxygen-containing functional groups. Journal of<br>Colloid and Interface Science, 2022, 608, 459-469.                   | 9.4  | 13        |
| 95  | High-Strength Albumin Hydrogels With Hybrid Cross-Linking. Frontiers in Chemistry, 2020, 8, 106.                                                                                                                                                                  | 3.6  | 12        |
| 96  | Fe,N-doped carbon as peroxidase mimics for single-use colorimetric bioassays. Journal of Materials<br>Science, 2021, 56, 13579-13589.                                                                                                                             | 3.7  | 12        |
| 97  | Highly Reliable Carbon Nanotubeâ€Based Composite Fibers Cross‣inked by a 3D Polymer Network.<br>Advanced Engineering Materials, 2014, 16, 961-965.                                                                                                                | 3.5  | 11        |
| 98  | Direct Preparation of Carbon Nanotube Intramolecular Junctions on Structured Substrates.<br>Scientific Reports, 2016, 6, 38032.                                                                                                                                   | 3.3  | 11        |
| 99  | Site-Selective Transformation for Preparing Tripod-like NiCo-Sulfides@Carbon Boosts Enhanced Areal Capacity and Cycling Reliability. ACS Applied Materials & amp; Interfaces, 2021, 13, 25316-25324.                                                              | 8.0  | 11        |
| 100 | Designing Tubular Architectures Composed of Hollow Nâ€Đoped Carbon Polyhedrons for Improved Supercapacitance. Advanced Materials Interfaces, 2021, 8, 2100805.                                                                                                    | 3.7  | 11        |
| 101 | Enhanced Jahn–Teller distortion boosts molybdenum trioxide's superior lithium ion storage<br>capability. Dalton Transactions, 2022, 51, 524-531.                                                                                                                  | 3.3  | 11        |
| 102 | 2D material–based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications.<br>Analytical and Bioanalytical Chemistry, 2022, 414, 2971-2989.                                                                                                      | 3.7  | 11        |
| 103 | Photovoltage memory effect in a portable Faradaic junction solar rechargeable device. Nature Communications, 2022, 13, 2544.                                                                                                                                      | 12.8 | 11        |
| 104 | Mechanisms for selfâ€ŧemplating design of micro/nanostructures toward efficient energy storage.<br>Exploration, 2022, 2, .                                                                                                                                        | 11.0 | 11        |
| 105 | Highly enhanced electrochemical cycling stabilities of hierarchical partially-embedded MnO/carbon<br>nanofiber composites as supercapacitor electrodes. Materials Science and Engineering B: Solid-State<br>Materials for Advanced Technology, 2020, 262, 114684. | 3.5  | 10        |
| 106 | 5-Carboxyfluorescein: intrinsic peroxidase-like catalytic activity and its application in the biomimetic synthesis of polyaniline nanoplatelets. Journal of Materials Chemistry B, 2017, 5, 5937-5941.                                                            | 5.8  | 9         |
| 107 | Time-dependent microstructural evolution mechanisms of twisted carbon nanotube fibers under tension and relaxation. International Journal of Plasticity, 2021, 136, 102866.                                                                                       | 8.8  | 9         |
| 108 | Wetâ€Chemistry: A Useful Tool for Deriving Metal–Organic Frameworks toward Supercapacitors and<br>Secondary Batteries. Advanced Materials Interfaces, 2022, 9, .                                                                                                  | 3.7  | 9         |

| #   | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Co <sub>2</sub> V <sub>2</sub> O <sub>7</sub> @Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> MXene<br>Hollow Structures Synergizing the Merits of Conversion and Intercalation for Efficient Lithium Ion<br>Storage. Advanced Sustainable Systems, 2022, 6, .                | 5.3  | 8         |
| 110 | Nonlinear stress-strain behavior of carbon nanotube fibers subject to slow sustained strain rate.<br>Applied Physics Letters, 2013, 103, .                                                                                                                                   | 3.3  | 7         |
| 111 | Design of highly ordered hierarchical catalytic nanostructures as high-flexibility counter electrodes for fiber-shaped dye-sensitized solar cells. Applied Physics Letters, 2021, 118, .                                                                                     | 3.3  | 7         |
| 112 | Fabrication of Microscale Carbon Nanotube Fibers. Journal of Nanomaterials, 2012, 2012, 1-10.                                                                                                                                                                                | 2.7  | 6         |
| 113 | A high-voltage solar rechargeable device based on a CoPi/BiVO <sub>4</sub> faradaic junction. Journal of Materials Chemistry A, 2022, 10, 1802-1807.                                                                                                                         | 10.3 | 6         |
| 114 | A Review on the Prediction of Health State and Serving Life of Lithiumâ€Ion Batteries. Chemical Record, 2022, 22, .                                                                                                                                                          | 5.8  | 6         |
| 115 | Tunable hierarchical hexagonal nickel telluride (Ni3Te2) laminated microsheets as flexible counter electrodes for high-performance fibrous dye-sensitized solar cells: Accelerated electrocatalysis reduction of I3â° ions. Chemical Engineering Journal, 2022, 442, 136286. | 12.7 | 5         |
| 116 | Dual Enhancement of Sodium Storage Induced through Both S-Compositing and Co-Doping Strategies.<br>ACS Applied Materials & Interfaces, 2021, 13, 54043-54058.                                                                                                                | 8.0  | 3         |
| 117 | A Capacitorâ€ŧype Faradaic Junction for Direct Solar Energy Conversion and Storage. Angewandte<br>Chemie, 2021, 133, 1410-1415.                                                                                                                                              | 2.0  | 1         |