
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NLRC5 Negatively Regulates the NF-κB and Type I Interferon Signaling Pathways. Cell, 2010, 141, 483-496.	28.9	365
2	Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 2014, 5, 5439-5452.	1.8	303
3	TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor p62 to Promote Innate Immune Responses. Molecular Cell, 2016, 64, 105-119.	9.7	277
4	Mechanisms and pathways of innate immune activation and regulation in health and cancer. Human Vaccines and Immunotherapeutics, 2014, 10, 3270-3285.	3.3	246
5	CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nature Communications, 2017, 8, 202.	12.8	246
6	NLRX1 Negatively Regulates TLR-Induced NF-κB Signaling by Targeting TRAF6 and IKK. Immunity, 2011, 34, 843-853.	14.3	241
7	NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nature Immunology, 2012, 13, 387-395.	14.5	229
8	Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharmaceutica Sinica B, 2020, 10, 1205-1215.	12.0	193
9	Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discovery, 2017, 3, 17006.	6.7	166
10	Mucosal Profiling of Pediatric-Onset Colitis and IBD Reveals Common Pathogenics and Therapeutic Pathways. Cell, 2019, 179, 1160-1176.e24.	28.9	163
11	Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells. Molecular Cell, 2017, 68, 308-322.e4.	9.7	149
12	Zika virus elicits inflammation to evade antiviral response by cleaving <scp>cGAS</scp> via <scp>NS</scp> 1â€caspaseâ€1 axis. EMBO Journal, 2018, 37, .	7.8	148
13	TRIM11 Suppresses AIM2 Inflammasome by Degrading AIM2 via p62-Dependent Selective Autophagy. Cell Reports, 2016, 16, 1988-2002.	6.4	141
14	USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Research, 2014, 24, 400-416.	12.0	140
15	<scp>USP</scp> 19 modulates autophagy and antiviral immune responses by deubiquitinating Beclinâ€1. EMBO Journal, 2016, 35, 866-880.	7.8	136
16	LRRC25 inhibits type I IFN signaling by targeting ISG15â€associated RIGâ€I for autophagic degradation. EMBO Journal, 2018, 37, 351-366.	7.8	123
17	Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. Journal of Clinical Investigation, 2020, 130, 2111-2128.	8.2	111
18	Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. Journal of Clinical Investigation, 2018, 128, 3425-3438.	8.2	111

#	Article	IF	CITATIONS
19	Enhanced TLR-induced NF-κB signaling and type I interferon responses in NLRC5 deficient mice. Cell Research, 2012, 22, 822-835.	12.0	110
20	USP38 Inhibits Type I Interferon Signaling by Editing TBK1ÂUbiquitination through NLRP4 Signalosome. Molecular Cell, 2016, 64, 267-281.	9.7	107
21	LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathogens, 2017, 13, e1006503.	4.7	103
22	m6A RNA modification controls autophagy through upregulating ULK1 protein abundance. Cell Research, 2018, 28, 955-957.	12.0	95
23	RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-ήB hyper-activation and inflammation. Signal Transduction and Targeted Therapy, 2021, 6, 167.	17.1	87
24	USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Scientific Reports, 2015, 5, 12738.	3.3	86
25	Interplay of m ⁶ A and H3K27 trimethylation restrains inflammation during bacterial infection. Science Advances, 2020, 6, eaba0647.	10.3	85
26	DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning. Genomics, Proteomics and Bioinformatics, 2018, 16, 294-306.	6.9	81
27	STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death and Differentiation, 2019, 26, 2314-2328.	11.2	81
28	SFTSV Infection Induces BAK/BAX-Dependent Mitochondrial DNA Release to Trigger NLRP3 Inflammasome Activation. Cell Reports, 2020, 30, 4370-4385.e7.	6.4	80
29	COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncolmmunology, 2015, 4, e1044712.	4.6	79
30	Assembly of the WHIP-TRIM14-PPP6C Mitochondrial Complex Promotes RIG-I-Mediated Antiviral Signaling. Molecular Cell, 2017, 68, 293-307.e5.	9.7	77
31	<i>Porphyromonas gingivalis</i> Promotes Colorectal Carcinoma by Activating the Hematopoietic <i>NLRP3</i> Inflammasome. Cancer Research, 2021, 81, 2745-2759.	0.9	77
32	Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduction and Targeted Therapy, 2020, 5, 221.	17.1	75
33	USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cellular and Molecular Immunology, 2021, 18, 2431-2442.	10.5	74
34	TRIM9 short isoform preferentially promotes DNA and RNA virus-induced production of type I interferon by recruiting GSK3Î ² to TBK1. Cell Research, 2016, 26, 613-628.	12.0	70
35	IL-17 production by tissue-resident MAIT cells is locally induced in children with pneumonia. Mucosal Immunology, 2020, 13, 824-835.	6.0	70
36	Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome. Nature Communications, 2021, 12, 2915.	12.8	69

#	Article	IF	CITATIONS
37	Broad and diverse mechanisms used by deubiquitinase family members in regulating the type I interferon signaling pathway during antiviral responses. Science Advances, 2018, 4, eaar2824.	10.3	65
38	NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection. Journal of Allergy and Clinical Immunology, 2019, 144, 777-787.e9.	2.9	63
39	Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression. Autophagy, 2021, 17, 1379-1392.	9.1	57
40	LRRC59 modulates type I interferon signaling by restraining the SQSTM1/p62-mediated autophagic degradation of pattern recognition receptor DDX58/RIC-I. Autophagy, 2020, 16, 408-418.	9.1	56
41	NLRP11 attenuates Toll-like receptor signalling by targeting TRAF6 for degradation via the ubiquitin ligase RNF19A. Nature Communications, 2017, 8, 1977.	12.8	54
42	Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis, 2020, 9, 65.	4.9	52
43	Auto-ubiquitination of NEDD4-1 Recruits USP13 to Facilitate Autophagy through Deubiquitinating VPS34. Cell Reports, 2020, 30, 2807-2819.e4.	6.4	44
44	Reversible ubiquitination shapes NLRC5 function and modulates NF-κB activation switch. Journal of Cell Biology, 2015, 211, 1025-1040.	5.2	43
45	LRRC25 Functions as an Inhibitor of NF-κB Signaling Pathway by Promoting p65/RelA for Autophagic Degradation. Scientific Reports, 2017, 7, 13448.	3.3	43
46	TRIM45 functions as a tumor suppressor in the brain via its E3 ligase activity by stabilizing p53 through K63-linked ubiquitination. Cell Death and Disease, 2017, 8, e2831-e2831.	6.3	42
47	Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. Journal of Allergy and Clinical Immunology, 2021, 147, 267-279.	2.9	38
48	SKP2 attenuates NF-κB signaling by mediating IKKβ degradation through autophagy. Journal of Molecular Cell Biology, 2018, 10, 205-215.	3.3	32
49	Pik3ip1 Is a Negative Immune Regulator that Inhibits Antitumor T-Cell Immunity. Clinical Cancer Research, 2019, 25, 6180-6194.	7.0	32
50	The BECN1-USP19 axis plays a role in the crosstalk between autophagy and antiviral immune responses. Autophagy, 2016, 12, 1210-1211.	9.1	31
51	HFE inhibits type I IFNs signaling by targeting the SQSTM1-mediated MAVS autophagic degradation. Autophagy, 2021, 17, 1962-1977.	9.1	31
52	Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy, 2022, 18, 860-876.	9.1	31
53	DHX29 functions as an RNA co-sensor for MDA5-mediated EMCV-specific antiviral immunity. PLoS Pathogens, 2018, 14, e1006886.	4.7	30
54	Calnexin Impairs the Antitumor Immunity of CD4+ and CD8+ T Cells. Cancer Immunology Research, 2019, 7, 123-135.	3.4	30

#	Article	IF	CITATIONS
55	p62 acts as an oncogene and is targeted by miR-124-3p in glioma. Cancer Cell International, 2019, 19, 280.	4.1	29
56	Structural basis for GTP-induced dimerization and antiviral function of guanylate-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
57	The First Case of Ischemia-Free Kidney Transplantation in Humans. Frontiers in Medicine, 2019, 6, 276.	2.6	27
58	<scp>NLRP</scp> 11 disrupts <scp>MAVS</scp> signalosome to inhibit type I interferon signaling and virusâ€induced apoptosis. EMBO Reports, 2017, 18, 2160-2171.	4.5	26
59	Dynamics of P53 in response to DNA damage: Mathematical modeling and perspective. Progress in Biophysics and Molecular Biology, 2015, 119, 175-182.	2.9	25
60	BST2 inhibits type I IFN (interferon) signaling by accelerating MAVS degradation through CALCOCO2-directed autophagy. Autophagy, 2018, 14, 171-172.	9.1	25
61	USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. Advanced Science, 2020, 7, 2002680.	11.2	25
62	Contributions of T cell dysfunction to the resistance against anti-PD-1 therapy in oral carcinogenesis. Journal of Experimental and Clinical Cancer Research, 2019, 38, 299.	8.6	24
63	TRIM14 Promotes Noncanonical NFâ€₽̂B Activation by Modulating p100/p52 Stability via Selective Autophagy. Advanced Science, 2020, 7, 1901261.	11.2	24
64	The Deubiquitinase USP38 Promotes NHEJ Repair through Regulation of HDAC1 Activity and Regulates Cancer Cell Response to Genotoxic Insults. Cancer Research, 2020, 80, 719-731.	0.9	24
65	A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses. Scientific Reports, 2016, 6, 29263.	3.3	23
66	Mutual Stabilization between TRIM9 Short Isoform and MKK6 Potentiates p38 Signaling to Synergistically Suppress Glioblastoma Progression. Cell Reports, 2018, 23, 838-851.	6.4	23
67	Virus-specific editing identification approach reveals the landscape of A-to-I editing and its impacts on SARS-CoV-2 characteristics and evolution. Nucleic Acids Research, 2022, 50, 2509-2521.	14.5	23
68	OTUD7B deubiquitinates SQSTM1/p62 and promotes IRF3 degradation to regulate antiviral immunity. Autophagy, 2022, 18, 2288-2302.	9.1	22
69	Selective autophagy controls the stability of TBK1 via NEDD4 to balance host defense. Cell Death and Differentiation, 2022, 29, 40-53.	11.2	21
70	The Fâ€box protein <scp>FBXL</scp> 18 promotes glioma progression by promoting K63â€linked ubiquitination of Akt. FEBS Letters, 2017, 591, 145-154.	2.8	20
71	cGAS guards against chromosome end-to-end fusions during mitosis and facilitates replicative senescence. Protein and Cell, 2022, 13, 47-64.	11.0	20
72	Palmitoylation restricts SQSTM1/p62-mediated autophagic degradation of NOD2 to modulate inflammation. Cell Death and Differentiation, 2022, 29, 1541-1551.	11.2	20

Јим Сиг

#	Article	IF	CITATIONS
73	Stratified ubiquitination of RIG-I creates robust immune response and induces selective gene expression. Science Advances, 2017, 3, e1701764.	10.3	18
74	A plausible model for bimodal p53 switch in DNA damage response. FEBS Letters, 2014, 588, 815-821.	2.8	15
75	The NEDD4-USP13 axis facilitates autophagy via deubiquitinating PIK3C3. Autophagy, 2020, 16, 1150-1151.	9.1	14
76	High-throughput screening of functional deubiquitinating enzymes in autophagy. Autophagy, 2021, 17, 1367-1378.	9.1	14
77	Single AAV-Mediated CRISPR-SaCas9 Inhibits HSV-1 Replication by Editing ICP4 in Trigeminal Ganglion Neurons. Molecular Therapy - Methods and Clinical Development, 2020, 18, 33-43.	4.1	14
78	LRRC14 attenuates Toll-like receptor-mediated NF-ήB signaling through disruption of IKK complex. Experimental Cell Research, 2016, 347, 65-73.	2.6	13
79	Selection of reference genes for gene expression studies in human bladder cancer using SYBR‑Green quantitative polymerase chain reaction. Oncology Letters, 2017, 14, 6001-6011.	1.8	10
80	Autophagy and Immune Tolerance. Advances in Experimental Medicine and Biology, 2019, 1206, 635-665.	1.6	10
81	Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Frontiers in Microbiology, 2022, 13, 889835.	3.5	9
82	Dual Feedforward Loops Modulate Type I Interferon Responses and Induce Selective Gene Expression during TLR4 Activation. IScience, 2020, 23, 100881.	4.1	7
83	TRIM14 inhibits OPTN-mediated autophagic degradation of KDM4D to epigenetically regulate inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
84	Mathematical model identifies effective P53 accumulation with target gene binding affinity in DNA damage response for cell fate decision. Cell Cycle, 2018, 17, 2716-2730.	2.6	6
85	Selective Autophagy Regulates Innate Immunity Through Cargo Receptor Network. Advances in Experimental Medicine and Biology, 2019, 1209, 145-166.	1.6	6
86	An inducible CRISPR/Cas9 screen identifies DTX2 as a transcriptional regulator of human telomerase. IScience, 2022, 25, 103813.	4.1	6
87	Autophagy Activation Induces p62-Dependent Autophagic Degradation of Dengue Virus Capsid Protein During Infection. Frontiers in Microbiology, 0, 13, .	3.5	6
88	Integrated modeling and analysis of intracellular and intercellular mechanisms in shaping the interferon response to viral infection. PLoS ONE, 2017, 12, e0186105.	2.5	5
89	Palmitoylation facilitates inflammation through suppressing NOD2 degradation mediated by the selective autophagy receptor SQSTM1. Autophagy, 2022, 18, 2254-2255.	9.1	4
90	The inhibitory effect of troglitazone on macrophage differentiation mediated by repressing NF-κB ctivation independently of PPARγ. Molecular and Cellular Toxicology, 2014, 10, 261-268.	1.7	2

#	Article	IF	CITATIONS
91	lgniting autophagy through the regulation of phase separation. Signal Transduction and Targeted Therapy, 2020, 5, 49.	17.1	2
92	Unanchored ubiquitin chain sustains RIG-I-induced interferon-I activation and controls selective gene expression. Science Bulletin, 2021, 66, 794-802.	9.0	2
93	Introduction. Advances in Experimental Medicine and Biology, 2019, 1209, 1-6.	1.6	Ο
94	The TRIM14-USP14-BRCC3 complex epigenetically regulates inflammation through inhibiting OPTN-mediated autophagic degradation of KDM4D. Autophagy, 2022, , .	9.1	0