Yinghong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223799/publications.pdf

Version: 2024-02-01

331538 265120 1,936 42 65 21 citations h-index g-index papers 65 65 65 1870 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ethane conversion in the presence of CO2 over Co-based ZSM-5 zeolite: Co species controlling the reaction pathway. Molecular Catalysis, 2022, 519, 112155.	1.0	5
2	Systematic Assessment of Precious Metal Recovery to Improve Environmental and Resource Protection. ACS ES&T Engineering, 2022, 2, 1039-1052.	3.7	22
3	Ethane dehydrogenation over Co-based MOR zeolites. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2045-2058.	0.8	2
4	Enhanced Catalytic Performance of Cr/MOR for Ethane Dehydrogenation Through Dealumination. Catalysis Letters, 2021, 151, 1499-1507.	1.4	3
5	Dehydrogenation of ethane assisted by CO2 over Y-doped ceria supported Au catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 417-429.	0.8	8
6	Cobaltous oxide supported on MFI zeolite as an efficient ethane dehydrogenation catalyst. Microporous and Mesoporous Materials, 2021, 312, 110791.	2.2	22
7	Enhancing BTX selectivity of the syngas to aromatics reaction through silylation of CTAB pretreated ZSM-5. Catalysis Science and Technology, 2021, 11, 4944-4952.	2.1	5
8	Morphology Effects of Nanoscale Er2O3 and Sr-Er2O3 Catalysts for Oxidative Coupling of Methane. Catalysis Letters, 2021, 151, 2197.	1.4	10
9	Nanosheet-Like Ho2O3 and Sr-Ho2O3 Catalysts for Oxidative Coupling of Methane. Catalysts, 2021, 11, 388.	1.6	5
10	Ga-Doped MgAl ₂ O ₄ Spinel as an Efficient Catalyst for Ethane Dehydrogenation to Ethylene Assisted by CO ₂ . Industrial & Engineering Chemistry Research, 2021, 60, 11707-11714.	1.8	16
11	Oxidative coupling of methane over Y2O3 and Sr–Y2O3 nanorods. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 711-725.	0.8	3
12	Photocatalytic Nitroaromatic Prodrug Activation by Functionalized Gold Nanoclusters. ACS Applied Nano Materials, 2021, 4, 13413-13424.	2.4	6
13	A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation–Knoevenagel Condensation Reaction. Catalysts, 2020, 10, 712.	1.6	8
14	Direct conversion of syngas into light aromatics over Cu-promoted ZSM-5 with ceria–zirconia solid solution. Catalysis Science and Technology, 2020, 10, 6562-6572.	2.1	18
15	Isobutane Dehydrogenation Assisted by CO 2 over Silicaliteâ€1â€Supported ZnO Catalysts: Influence of Support Crystallite Size. Chinese Journal of Chemistry, 2020, 38, 703-708.	2.6	3
16	Efficient Aerobic Oxidation of Ethyl Lactate to Ethyl Pyruvate over V ₂ O ₅ /g-C ₃ N ₄ Catalysts. ACS Omega, 2020, 5, 16200-16207.	1.6	13
17	Au/TiO2 for Ethane Dehydrogenation: Effect of Silica Doping. Catalysis Letters, 2020, 150, 2013-2020.	1.4	10
18	g-C3N4 modified Co3O4 as efficient catalysts for aerobic oxidation of benzyl alcohol. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 109-120.	0.8	10

#	Article	IF	CITATIONS
19	Mn-doped CeO2 Nanorod Supported Au Catalysts for Dehydrogenation of Ethane with CO2. Catalysts, 2019, 9, 119.	1.6	14
20	Chromium Oxide Supported on Silicalite-1 Zeolite as a Novel Efficient Catalyst for Dehydrogenation of Isobutane Assisted by CO2. Catalysts, 2019, 9, 1040.	1.6	13
21	Oxidative Dehydrogenation of Ethane with CO2 over Au/CeO2 Nanorod Catalysts. Catalysis Letters, 2018, 148, 1634-1642.	1.4	23
22	Single-Site CrO x Moieties on Silicalite: Highly Active and Stable for Ethane Dehydrogenation with CO2. Catalysis Letters, 2018, 148, 1375-1382.	1.4	21
23	Ceriaâ€Zirconia/Zeolite Bifunctional Catalyst for Highly Selective Conversion of Syngas into Aromatics. ChemCatChem, 2018, 10, 4519-4524.	1.8	68
24	Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene Using CO2 over Cr-SiO2 Catalysts Prepared by Sol-gel Method. Chemical Research in Chinese Universities, 2018, 34, 609-615.	1.3	7
25	Catalytic decomposition of N ₂ O over Rh/Zn–Al ₂ O ₃ catalysts. RSC Advances, 2017, 7, 4243-4252.	1.7	19
26	Cr/ZSM-5 for ethane dehydrogenation: Enhanced catalytic activity through surface silanol. Applied Catalysis A: General, 2017, 532, 111-119.	2.2	58
27	Direct conversion of bio-ethanol to propylene in high yield over the composite of In ₂ O ₃ and zeolite beta. Green Chemistry, 2017, 19, 5582-5590.	4.6	35
28	Dehydrogenation of Isobutane to Isobutene with Carbon Dioxide over SBAâ€15â€Supported Chromiaâ€Ceria Catalysts. Chinese Journal of Chemistry, 2017, 35, 1619-1626.	2.6	14
29	Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts. Catalysts, 2016, 6, 171.	1.6	17
30	Chromium-based catalysts for ethane dehydrogenation: Effect of SBA-15 support. Microporous and Mesoporous Materials, 2016, 234, 370-376.	2.2	41
31	Ga2O3/HSSZ-13 for dehydrogenation of ethane: Effect of pore geometry of support. Catalysis Communications, 2015, 71, 42-45.	1.6	21
32	Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite. Chinese Journal of Catalysis, 2015, 36, 1242-1248.	6.9	64
33	Preparation and catalytic performance of perfluorosulfonic acid-functionalized carbon nanotubes. Chinese Journal of Catalysis, 2014, 35, 1874-1882.	6.9	3
34	Synthesis of zirconia porous phosphate heterostructures (Zr-PPH) for Prins condensation. Catalysis Communications, 2014, 43, 97-101.	1.6	9
35	Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets. Journal of Molecular Catalysis A, 2014, 394, 83-88.	4.8	35
36	Enhanced activity over alkyl/aryl functionalized porous pillared-zirconium phosphates in liquid-phase reaction. Journal of Molecular Catalysis A, 2013, 380, 84-89.	4.8	7

#	Article	IF	Citations
37	Dehydrogenation of Propane to Propylene in the Presence of CO ₂ over Steamingâ€treated HZSMâ€5 Supported ZnO. Chinese Journal of Chemistry, 2012, 30, 929-934.	2.6	15
38	Dehydrogenation of propane over MWW-type zeolites supported gallium oxide. Catalysis Communications, 2012, 18, 63-67.	1.6	31
39	Ga2O3/HZSM-48 for dehydrogenation of propane: Effect of acidity and pore geometry of support. Journal of Industrial and Engineering Chemistry, 2012, 18, 731-736.	2.9	47
40	Acidity and porosity modulation of MWW type zeolites for Nopol production by Prins condensation. Catalysis Communications, 2011, 12, 1131-1135.	1.6	29
41	Chromium oxide supported on ZSM-5 as a novel efficient catalyst for dehydrogenation of propane with CO2. Microporous and Mesoporous Materials, 2011, 145, 194-199.	2.2	79
42	Liquid-phase \hat{l}_{\pm} -Pinene Isomerization over Fe-doped Sulfated Zirconia Prepared by a Hydrothermal Treatment-assisted Process. Chinese Journal of Chemistry, 2011, 29, 1095-1100.	2.6	9
43	Dehydrogenation of Propane to Propylene over Ga ₂ O ₃ Supported on Mesoporous HZSMâ€5 in the Presence of CO ₂ . Chinese Journal of Chemistry, 2010, 28, 1559-1564.	2.6	14
44	Characterization and Catalytic Activities of Al2O3-Promoted Sulfated Tin Oxides. Catalysis Letters, 2009, 133, 119-124.	1.4	12
45	Isomerization of $\hat{l}\pm$ -Pinene Over Porous Phosphate Heterostructure Materials: Effects of Porosity and Acidity. Catalysis Letters, 2009, 131, 560-565.	1.4	9
46	ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2. Catalysis Today, 2009, 148, 316-322.	2.2	82
47	Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2. Applied Catalysis A: General, 2009, 356, 148-153.	2.2	91
48	Dehydrogenation of propane to propene over phosphorus-modified HZSM-5 supported Ga2O3. Reaction Kinetics and Catalysis Letters, 2008, 95, 113-122.	0.6	12
49	Sulfated tin oxide: An efficient catalyst for alkylation of hydroquinone with tert-butanol. Catalysis Communications, 2008, 9, 2274-2277.	1.6	17
50	Catalytic activities and properties of mesoporous sulfated Al2O3–ZrO2. Catalysis Letters, 2007, 116, 27-34.	1.4	14
51	Enhanced Stability of HZSM-5 Supported Ga2O3 Catalyst in Propane Dehydrogenation by Dealumination. Catalysis Letters, 2007, 119, 283-288.	1.4	47
52	MSU-S(BEA) mesoporous molecular sieve: An active and stable catalyst for alkylation of hydroquinone. Microporous and Mesoporous Materials, 2006, 88, 191-196.	2.2	11
53	Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts. Journal of Catalysis, 2006, 239, 470-477.	3.1	178
54	Role of surface pockets on MCM-49 structure in the alkylation of hydroquinone with tert-butanol. Journal of Catalysis, 2006, 240, 31-38.	3.1	13

YINGHONG

#	Article	IF	CITATIONS
55	Gas-phase photo-oxidations of organic compounds over different forms of zirconia. Journal of Molecular Catalysis A, 2005, 229, 233-239.	4.8	51
56	Delamination and aromatic amine intercalation of layered aluminophosphate with [Al3P4O16]3â stoichiometry. Journal of Colloid and Interface Science, 2005, 285, 731-736.	5.0	11
57	Dehydrogenation of propane to propene over different polymorphs of gallium oxide. Journal of Catalysis, 2005, 232, 143-151.	3.1	257
58	Hydrogenation of Methyl Benzoate over Mn/Al Catalysts: Comparison among Catalyst Preparation Routes. Topics in Catalysis, 2005, 35, 177-185.	1.3	3
59	Effect of modifiers on the activity of a Cr2O3/Al2O3 catalyst in the dehydrogenation of ethylbenzene with CO2. Green Chemistry, 2005, 7, 524.	4.6	29
60	Ethylbenzene dehydrogenation to styrene in the presence of carbon dioxide over chromia-based catalysts. New Journal of Chemistry, 2004, 28, 373.	1.4	9
61	Title is missing!. Catalysis Letters, 2003, 89, 41-47.	1.4	15
62	Title is missing!. Catalysis Letters, 2002, 83, 19-25.	1.4	94
63	Synthesis of mesoporous TiO2 with a crystalline framework. Chemical Communications, 2000, , 1755-1756.	2.2	115
64	Highâ∈Efficiency and Longâ∈life Synergetic Dualâ∈Oxide/Zeolite Catalyst for Direct Conversion of Syngas into Aromatics. ChemCatChem, 0, , .	1.8	3
65	Direct and Highly Selective Conversion of Bioethanol to Propylene Over Y-CeO2 and Zeolite Beta Composite, Catalysis Letters, O 1.	1.4	1