Elena Alberdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223789/publications.pdf

Version: 2024-02-01

		101496	149623
59	4,403	36	56
papers	citations	h-index	g-index
65	65	65	5560
03	03	03	3300
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Amyloid \hat{l}^2 / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease. Cell Death and Disease, 2022, 13, 253.	2.7	16
2	A Neuron, Microglia, and Astrocyte Triple Co-culture Model to Study Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 844534.	1.7	18
3	Recombinant Integrin \hat{I}^21 Signal Peptide Blocks Gliosis Induced by A \hat{I}^2 Oligomers. International Journal of Molecular Sciences, 2022, 23, 5747.	1.8	1
4	Polyphenols attenuate mitochondrial dysfunction induced by amyloid peptides., 2021,, 317-337.		0
5	RNA Localization and Local Translation in Glia in Neurological and Neurodegenerative Diseases: Lessons from Neurons. Cells, 2021, 10, 632.	1.8	15
6	Astrocytes in Alzheimer's Disease: Pathological Significance and Molecular Pathways. Cells, 2021, 10, 540.	1.8	62
7	Oligodendrocyte Differentiation and Myelination Is Potentiated via GABAB Receptor Activation. Neuroscience, 2020, 439, 163-180.	1.1	39
8	Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. Journal of Neuroscience, 2020, 40, 1453-1482.	1.7	204
9	Sephin1 Protects Neurons against Excitotoxicity Independently of the Integrated Stress Response. International Journal of Molecular Sciences, 2020, 21, 6088.	1.8	8
10	Mitochondrial division inhibitor 1 disrupts oligodendrocyte Ca ²⁺ homeostasis and mitochondrial function. Glia, 2020, 68, 1743-1756.	2.5	23
11	Early Effects of $\hat{A^2}$ Oligomers on Dendritic Spine Dynamics and Arborization in Hippocampal Neurons. Frontiers in Synaptic Neuroscience, 2020, 12, 2.	1.3	29
12	$\hat{Al^2}$ oligomers promote oligodendrocyte differentiation and maturation via integrin \hat{I}^21 and Fyn kinase signaling. Cell Death and Disease, 2019, 10, 445.	2.7	49
13	Contribution of Neurons and Glial Cells to Complement-Mediated Synapse Removal during Development, Aging and in Alzheimer's Disease. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	54
14	Aβ _{1â€"42} triggers the generation of a retrograde signaling complex from sentinel <scp>mRNA</scp> s in axons. EMBO Reports, 2018, 19, .	2.0	22
15	Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling. Frontiers in Molecular Neuroscience, 2018, 11 , 3 .	1.4	74
16	Isolation, Expansion, and Maturation of Oligodendrocyte Lineage Cells Obtained from Rat Neonatal Brain and Optic Nerve. Methods in Molecular Biology, 2018, 1791, 95-113.	0.4	11
17	Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	1.9	62
18	Amyloid βâ€induced astrogliosis is mediated by β1â€integrin via NADPH oxidase 2 in Alzheimer's disease. Aging Cell, 2016, 15, 1140-1152.	3.0	53

#	Article	IF	Citations
19	Axon-to-Glia Interaction Regulates GABA _A Receptor Expression in Oligodendrocytes. Molecular Pharmacology, 2016, 89, 63-74.	1.0	43
20	CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death and Disease, 2014, 5, e1156-e1156.	2.7	56
21	Calcium Dyshomeostasis in White Matter Injury. , 2014, , 433-460.		O
22	Ca ²⁺ â€dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid βâ€treated astrocytes and in a model of <scp>A</scp> lzheimer's disease. Aging Cell, 2013, 12, 292-302.	3.0	160
23	Zn ²⁺ â€induced ERK activation mediates PARPâ€1â€dependent ischemicâ€reoxygenation damage to oligodendrocytes. Glia, 2013, 61, 383-393.	2.5	36
24	1–42 β-Amyloid peptide requires PDK1/nPKC/Rac 1 pathway to induce neuronal death. Translational Psychiatry, 2013, 3, e219-e219.	2.4	44
25	Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death and Disease, 2012, 3, e268-e268.	2.7	47
26	Calcium Dyshomeostasis in Astrocytes After Ischemia. , 2012, , 103-127.		0
27	Amyloid \hat{l}^2 peptide oligomers directly activate NMDA receptors. Cell Calcium, 2011, 49, 184-190.	1.1	192
28	Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium, 2011, 50, 468-472.	1.1	63
29	Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death. Journal of Biological Chemistry, 2011, 286, 11825-11836.	1.6	46
30	Bax and Calpain Mediate Excitotoxic Oligodendrocyte Death Induced by Activation of Both AMPA and Kainate Receptors. Journal of Neuroscience, 2011, 31, 2996-3006.	1.7	55
31	P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia, 2010, 58, 730-740.	2.5	191
32	Amyloid \hat{l}^2 oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 2010, 47, 264-272.	1.1	318
33	Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death and Disease, 2010, 1, e54-e54.	2.7	88
34	Endoplasmic reticulum Ca2+ release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity. Cell Calcium, 2009, 46, 273-281.	1.1	113
35	CB ₁ cannabinoid receptorâ€dependent and â€independent inhibition of depolarizationâ€induced calcium influx in oligodendrocytes. Glia, 2009, 57, 295-306.	2.5	42
36	A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone. PLoS ONE, 2009, 4, e5278.	1.1	19

#	Article	IF	Citations
37	P2X ₇ Receptor Blockade Prevents ATP Excitotoxicity in Oligodendrocytes and Ameliorates Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2007, 27, 9525-9533.	1.7	356
38	Excitotoxic damage to white matter. Journal of Anatomy, 2007, 210, 693-702.	0.9	216
39	Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiology of Disease, 2006, 23, 374-386.	2.1	145
40	Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia, 2006, 53, 201-211.	2.5	72
41	Activation of Kainate Receptors Sensitizes Oligodendrocytes to Complement Attack. Journal of Neuroscience, 2006, 26, 3220-3228.	1.7	87
42	Calcium and glial cell death. Cell Calcium, 2005, 38, 417-425.	1.1	68
43	Caspase-Dependent and Caspase-Independent Oligodendrocyte Death Mediated by AMPA and Kainate Receptors. Journal of Neuroscience, 2003, 23, 9519-9528.	1.7	134
44	Ca2+ Influx through AMPA or Kainate Receptors Alone Is Sufficient to Initiate Excitotoxicity in Cultured Oligodendrocytes. Neurobiology of Disease, 2002, 9, 234-243.	2.1	110
45	Excitotoxicity in glial cells. European Journal of Pharmacology, 2002, 447, 239-246.	1.7	117
46	The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends in Neurosciences, 2001, 24, 224-230.	4.2	320
47	Binding of Pigment Epithelium-derived Factor (PEDF) to Retinoblastoma Cells and Cerebellar Granule Neurons. Journal of Biological Chemistry, 1999, 274, 31605-31612.	1.6	120
48	Contribution of phosphodiesterase isoenzymes and cyclic nucleotide efflux to the regulation of cyclic GMP levels in aortic smooth muscle cells. Biochemical Pharmacology, 1999, 58, 1675-1683.	2.0	30
49	Synthesis and anti-HIV-1 activities of new pyrimido[5,4-b]indoles. Il Farmaco, 1999, 54, 255-264.	0.9	16
50	Pigment epithelium-derived factor promotes the survival and differentiation of developing spinal motor neurons. Journal of Comparative Neurology, 1999, 412, 506-514.	0.9	105
51	Pigment Epithelium-Derived Factor (PEDF) in the Retina. , 1999, , 519-526.		1
52	Pigment Epithelium-Derived Factor (PEDF) Binds to Glycosaminoglycans:Â Analysis of the Binding Site. Biochemistry, 1998, 37, 10643-10652.	1.2	100
53	Inflammation and Noninhibitor Serpins. Advances in Experimental Medicine and Biology, 1997, , 307-339.	0.8	2
54	A checkerboard method to evaluate interactions between drugs. Biochemical Pharmacology, 1996, 51, 635-644.	2.0	70

#	Article	IF	CITATIONS
55	Recombinant human pigment epitheliumâ€derived factor (PEDF): Characterization of PEDF overexpressed and secreted by eukaryotic cells. Protein Science, 1996, 5, 2575-2582.	3.1	54
56	New Indole and Pyridazinoindole Analogs â€" Synthesis and Study as Inhibitors of Phosphodiesterases and as Inhibitors of Blood Platelet Aggregation. Archiv Der Pharmazie, 1995, 328, 689-698.	2.1	3
57	New 4-Amino-7,8-dimethoxy-5h-pyrimido[5,4-b]indole Derivatives: Synthesis and Studies as Inhibitors of Phosphodiesterases. Archiv Der Pharmazie, 1993, 326, 879-885.	2.1	8
58	A Novel Class of Cardiotonic Agents: Synthesis and Biological Evaluation of Pyridazino [4,5-b] indoles with Cyclic AMP Phosphodiesterases Inhibiting Properties. Journal of Pharmaceutical Sciences, 1993, 82, 526-530.	1.6	6
59	New Indole and Triazino [5,4-b] indol-4-one Derivatives: Synthesis and Studies as Inotropics and Inhibitors of Blood Platelet Aggregation. Archiv Der Pharmazie, 1992, 325, 439-452.	2.1	4