Zuliang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223578/publications.pdf

Version: 2024-02-01

281 papers 14,482 citations

65 h-index 30920 102 g-index

281 all docs

281 docs citations

times ranked

281

12656 citing authors

#	Article	IF	CITATIONS
1	Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: Reactivity, characterization and mechanism. Water Research, 2011, 45, 3481-3488.	11.3	401
2	Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 2014, 83, 413-419.	9.3	389
3	Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. Journal of Hazardous Materials, 2019, 366, 563-572.	12.4	386
4	Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment, 2014, 466-467, 210-213.	8.0	375
5	Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 226-231.	4.7	359
6	Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 2011, 363, 601-607.	9.4	341
7	Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Journal of Colloid and Interface Science, 2013, 410, 67-73.	9.4	284
8	Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical Engineering Journal, 2019, 362, 628-637.	12.7	258
9	Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 2015, 264, 587-594.	12.7	257
10	Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 130, 295-301.	3.9	245
11	Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chemical Engineering Journal, 2014, 255, 141-148.	12.7	213
12	Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 117, 801-804.	3.9	203
13	Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. Journal of Colloid and Interface Science, 2008, 328, 243-247.	9.4	177
14	Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Industrial Crops and Products, 2013, 51, 342-347.	5 . 2	173
15	Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. Journal of Colloid and Interface Science, 2013, 398, 59-66.	9.4	162
16	Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion. Advanced Functional Materials, 2020, 30, 1905665.	14.9	159
17	One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: Biomolecules identification, characterization and catalytic activity. Chemical Engineering Journal, 2017, 308, 904-911.	12.7	154
18	Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chemical Engineering Journal, 2013, 229, 27-34.	12.7	151

#	Article	IF	CITATIONS
19	One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. Journal of Hazardous Materials, 2016, 303, 145-153.	12.4	137
20	Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere, 2016, 159, 23-31.	8.2	125
21	The removal of amoxicillin from wastewater using organobentonite. Journal of Environmental Management, 2013, 129, 569-576.	7.8	117
22	Chlorococcum sp. MM11â€"a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology, 2015, 27, 1861-1869.	2.8	111
23	Simultaneous Determination by Capillary Gas Chromatography of Organic Acids, Sugars, and Sugar Alcohols in Plant Tissue Extracts as Their Trimethylsilyl Derivatives. Analytical Biochemistry, 1999, 266, 77-84.	2.4	110
24	Dechlorination of p-chlorophenol from aqueous solution using bentonite supported Fe/Pd nanoparticles: Synthesis, characterization and kinetics. Desalination, 2011, 280, 167-173.	8.2	109
25	Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. Journal of Cleaner Production, 2018, 176, 929-936.	9.3	109
26	Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 154-159.	3.9	102
27	Simultaneous removal of Pb(II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract. Journal of Cleaner Production, 2020, 242, 118476.	9.3	101
28	Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation. Water Research, 1999, 33, 3271-3280.	11.3	97
29	Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecological Engineering, 2016, 97, 32-39.	3.6	95
30	Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles. Chemosphere, 2014, 103, 80-85.	8.2	94
31	Integrated absorption-mineralisation for low-energy CO2 capture and sequestration. Applied Energy, 2018, 225, 356-366.	10.1	93
32	Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution. Journal of Cleaner Production, 2018, 189, 128-134.	9.3	92
33	Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. Journal of Colloid and Interface Science, 2020, 558, 106-114.	9.4	92
34	Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst. Journal of Colloid and Interface Science, 2015, 438, 87-93.	9.4	89
35	A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Applied Surface Science, 2017, 422, 469-474.	6.1	89
36	Adsorption of Orange II dye in aqueous solution onto surfactant-coated zeolite: Characterization, kinetic and thermodynamic studies. Journal of Colloid and Interface Science, 2014, 435, 15-20.	9.4	87

3

#	Article	IF	CITATIONS
37	Environmental application and ecological significance of nano-zero valent iron. Journal of Environmental Sciences, 2016, 44, 88-98.	6.1	86
38	Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Science of the Total Environment, 2018, 627, 314-321.	8.0	85
39	Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry. Talanta, 2007, 72, 394-400.	5.5	83
40	Comparison of TiO2 nanoparticle and graphene–TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes. Chemosphere, 2014, 112, 62-69.	8.2	83
41	Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 2016, 289, 463-470.	12.7	79
42	Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution. Journal of Hazardous Materials, 2013, 262, 819-825.	12.4	77
43	Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst. Separation and Purification Technology, 2015, 154, 161-167.	7.9	77
44	Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process. Applied Energy, 2017, 202, 496-506.	10.1	77
45	Removal of doxorubicin hydrochloride using Fe3O4 nanoparticles synthesized by euphorbia cochinchinensis extract. Chemical Engineering Journal, 2018, 353, 482-489.	12.7	77
46	Biodegradation of crystal violet using Burkholderia vietnamiensis CO9V immobilized on PVA–sodium alginate–kaolin gel beads. Ecotoxicology and Environmental Safety, 2012, 83, 108-114.	6.0	76
47	Simultaneous removal of Cu(II) and Cr(VI) by Mg–Al–Cl layered double hydroxide and mechanism insight. Journal of Environmental Sciences, 2017, 53, 16-26.	6.1	76
48	Highly efficient removal of antibiotic rifampicin from aqueous solution using green synthesis of recyclable nano-Fe3O4. Environmental Pollution, 2019, 247, 839-846.	7.5	75
49	Remediation of Direct Black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles. Chemical Engineering Journal, 2013, 223, 764-771.	12.7	74
50	Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles. Electrochimica Acta, 2014, 132, 223-229.	5.2	74
51	Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Applied Clay Science, 2017, 147, 137-142.	5.2	74
52	Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@SiO2 magnetic nanoparticles. Materials Science and Engineering C, 2019, 98, 65-73.	7.3	74
53	Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon. Journal of Hazardous Materials, 2012, 229-230, 419-425.	12.4	73
54	Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel. Chemical Engineering Journal, 2016, 294, 290-297.	12.7	73

#	Article	IF	Citations
55	Biosynthesized iron-based nanoparticles used as a heterogeneous catalyst for the removal of 2,4-dichlorophenol. Separation and Purification Technology, 2017, 175, 222-228.	7.9	7 3
56	Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu (II) and monochlorobenzene. Journal of Colloid and Interface Science, 2015, 447, 85-91.	9.4	72
57	Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon, 2019, 5, e01750.	3.2	72
58	Speciation of arsenic in ground water samples: A comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta, 2005, 68, 406-415.	5 . 5	71
59	Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles. Chemical Engineering Journal, 2016, 285, 459-466.	12.7	70
60	Insights into Carbonation Kinetics of Fly Ash from Victorian Lignite for CO ₂ Sequestration. Energy & Description of the Subsection of Fly Ash from Victorian Lignite for CO ₂	5.1	70
61	Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry. Talanta, 2007, 72, 1842-1846.	5.5	69
62	Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Environmental Pollution, 2018, 236, 562-569.	7.5	69
63	Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 2019, 219, 148-154.	8.2	69
64	Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite. Science of the Total Environment, 2020, 703, 135002.	8.0	69
65	Remediation of malachite green in wastewater by ZIF-8@Fe/Ni nanoparticles based on adsorption and reduction. Journal of Colloid and Interface Science, 2021, 594, 398-408.	9.4	69
66	Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Research, 2002, 36, 4830-4838.	11.3	68
67	Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron. Separation and Purification Technology, 2016, 170, 337-343.	7.9	68
68	A new nFe@ZIF-8 for the removal of Pb(II) from wastewater by selective adsorption and reduction. Journal of Colloid and Interface Science, 2020, 565, 167-176.	9.4	68
69	Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G. Chemosphere, 2017, 184, 664-672.	8.2	67
70	Simultaneous removal of Pb(II) and Cr(III) by magnetite nanoparticles using various synthesis conditions. Journal of Industrial and Engineering Chemistry, 2014, 20, 3543-3549.	5.8	66
71	Green reduction of graphene oxide using eucalyptus leaf extract and its application to remove dye. Chemosphere, 2018, 208, 417-424.	8.2	65
72	The mechanism for degrading Orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract. Journal of Hazardous Materials, 2015, 296, 37-45.	12.4	63

#	Article	IF	Citations
73	The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI). Science of the Total Environment, 2018, 627, 470-479.	8.0	63
74	Removal of co-contaminants Cu (II) and nitrate from aqueous solution using kaolin-Fe/Ni nanoparticles. Chemical Engineering Journal, 2014, 244, 19-26.	12.7	62
75	Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chemical Engineering Journal, 2019, 359, 976-981.	12.7	62
76	Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresource Technology, 2016, 211, 698-703.	9.6	61
77	New nano-biomaterials for the removal of malachite green from aqueous solution via a response surface methodology. Water Research, 2018, 146, 55-66.	11.3	61
78	Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Advances, 2014, 4, 53467-53474.	3.6	59
79	Mechanism of As(V) removal by green synthesized iron nanoparticles. Journal of Hazardous Materials, 2019, 379, 120811.	12.4	59
80	Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp Chemosphere, 2014, 108, 426-432.	8.2	58
81	Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Mikrochimica Acta, 2014, 181, 1199-1206.	5.0	57
82	Flow-injection Potentiometric Detection of Phosphates Using a Metallic Cobalt Wire Ion-selective Electrode. Analytical Communications, 1997, 34, 93-95.	2.2	56
83	Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles. Science of the Total Environment, 2019, 659, 491-498.	8.0	55
84	Synergetic adsorption and Fenton-like oxidation for simultaneous removal of ofloxacin and enrofloxacin using green synthesized Fe NPs. Chemical Engineering Journal, 2020, 382, 122871.	12.7	55
85	Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Materials Science and Engineering C, 2018, 82, 41-45.	7.3	54
86	Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure. Environmental Geochemistry and Health, 2006, 28, 73-78.	3.4	52
87	The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. Journal of Hazardous Materials, 2019, 379, 120832.	12.4	52
88	Modified green synthesis of Fe3O4@SiO2 nanoparticles for pH responsive drug release. Materials Science and Engineering C, 2020, 112, 110900.	7.3	52
89	Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI. Separation and Purification Technology, 2018, 197, 401-406.	7.9	51
90	Mechanism for removing 2,4-dichlorophenol via adsorption and Fenton-like oxidation using iron-based nanoparticles. Chemosphere, 2018, 206, 168-174.	8.2	51

#	Article	IF	Citations
91	Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Chemosphere, 2019, 232, 396-402.	8.2	51
92	Separation of chromium (III) and chromium (VI) by capillary electrophoresis using 2,6-pyridinedicarboxylic acid as a pre-column complexation agent. Journal of Chromatography A, 2001, 927, 219-227.	3.7	50
93	Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution. Applied Energy, 2017, 208, 1308-1317.	10.1	50
94	Enhanced removal of pefloxacin from aqueous solution by adsorption and Fenton-like oxidation using NH2-MIL-88B. Journal of Colloid and Interface Science, 2021, 583, 279-287.	9.4	50
95	Flow injection potentiometric determination of phosphate in waste waters and fertilisers using a cobalt wire ion-selective electrode. Analyst, The, 1998, 123, 1635-1640.	3.5	49
96	Speciation of glyphosate, phosphate and aminomethylphosphonic acid in soil extracts by ion chromatography with inductively coupled plasma mass spectrometry with an octopole reaction system. Talanta, 2009, 78, 852-856.	5.5	48
97	Degradation of scarlet 4BS in aqueous solution using bimetallic Fe/Ni nanoparticles. Journal of Colloid and Interface Science, 2012, 381, 30-35.	9.4	47
98	Removal of Cr(VI) from aqueous solution by surfactant-modified kaolinite. Journal of Industrial and Engineering Chemistry, 2014, 20, 3025-3032.	5.8	47
99	Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using Eucalyptus leaf extract. Industrial Crops and Products, 2015, 69, 308-313.	5.2	46
100	Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology. Environmental Technology and Innovation, 2016, 5, 136-147.	6.1	46
101	Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron. Science of the Total Environment, 2015, 530-531, 241-246.	8.0	45
102	Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: Characterization and kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 404-409.	4.7	44
103	Mechanistic insights into Pb(II) removal from aqueous solution by green reduced graphene oxide. Journal of Colloid and Interface Science, 2019, 550, 1-9.	9.4	44
104	A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater. Chemosphere, 2020, 250, 126329.	8.2	44
105	Kaolin-supported nanoscale zero-valent iron for removing cationic dye–crystal violet in aqueous solution. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	43
106	Simultaneous adsorption and degradation of Zn2+ and Cu2+ from wastewaters using nanoscale zero-valent iron impregnated with clays. Environmental Science and Pollution Research, 2013, 20, 3639-3648.	5. 3	43
107	Environmental remediation techniques of tributyltin contamination in soil and water: A review. Chemical Engineering Journal, 2014, 235, 141-150.	12.7	42
108	Biodegradation of TNT using Bacillus mycoides immobilized in PVA–sodium alginate–kaolin. Applied Clay Science, 2013, 83-84, 336-342.	5.2	41

#	Article	IF	CITATIONS
109	Direct determination of phosphate in soil extracts by potentiometric flow injection using a cobalt wire electrode. Analytica Chimica Acta, 1998, 363, 191-197.	5.4	40
110	Simultaneous Analysis of Amino and Organic Acids in Extracts of Plant Leaves astert-Butyldimethylsilyl Derivatives by Capillary Gas Chromatography. Analytical Biochemistry, 1998, 259, 203-211.	2.4	40
111	Extraction of arsenic species in soils using microwave-assisted extraction detected by ion chromatography coupled to inductively coupled plasma mass spectrometry. Environmental Geochemistry and Health, 2009, 31, 93-102.	3.4	40
112	Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresource Technology, 2013, 136, 588-594.	9.6	40
113	Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse. Biochemical Engineering Journal, 2015, 100, 76-82.	3.6	40
114	On-column complexation capillary electrophoretic separation of Fe2+ and Fe3+ using 2,6-pyridinedicarboxylic acid coupled with large-volume sample stacking. Journal of Chromatography A, 2004, 1023, 151-157.	3.7	39
115	Investigation of Copper(II) Interference on the Anodic Stripping Voltammetry of Lead(II) and Cadmium(II) at Bismuth Film Electrode. Electroanalysis, 2013, 25, 2637-2644.	2.9	39
116	Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant: Interaction with biological and advanced treatments. Chemosphere, 2019, 222, 431-439.	8.2	39
117	The separation of arsenic species in soils and plant tissues by anion-exchange chromatography with inductively coupled mass spectrometry using various mobile phases. Microchemical Journal, 2008, 89, 20-28.	4.5	38
118	Biodegradation of naphthalene using a functional biomaterial based on immobilized Bacillus fusiformis (BFN). Biochemical Engineering Journal, 2014, 90, 1-7.	3.6	38
119	Biosynthesis of Pd–Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. Journal of Power Sources, 2015, 291, 132-137.	7.8	38
120	One-step biosynthesis of hybrid reduced graphene oxide/iron-based nanoparticles by eucalyptus extract and its removal of dye. Journal of Cleaner Production, 2018, 203, 22-29.	9.3	38
121	Green mango peel-nanozerovalent iron activated persulfate oxidation of petroleum hydrocarbons in oil sludge contaminated soil. Environmental Technology and Innovation, 2018, 11, 142-152.	6.1	38
122	Removal mechanism of mitoxantrone by a green synthesized hybrid reduced graphene oxide @ iron nanoparticles. Chemosphere, 2020, 246, 125700.	8.2	38
123	Polybrominated diphenyl ethers (PBDEs) in marine foodstuffs in Australia: Residue levels and contamination status of PBDEs. Marine Pollution Bulletin, 2011, 63, 154-159.	5.0	37
124	Simultaneous removal of mixed contaminants by organoclays â€" Amoxicillin and Cu(II) from aqueous solution. Applied Clay Science, 2014, 102, 196-201.	5.2	37
125	Functional chitosan-stabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound. Carbohydrate Polymers, 2016, 136, 1085-1090.	10.2	37
126	How do phytogenic iron oxide nanoparticles drive redox reactions to reduce cadmium availability in a flooded paddy soil?. Journal of Hazardous Materials, 2021, 403, 123736.	12.4	37

#	Article	IF	Citations
127	Decoloration of acid violet red B by bentonite-supported nanoscale zero-valent iron: Reactivity, characterization, kinetics and reaction pathway. Applied Clay Science, 2014, 93-94, 56-61.	5 . 2	36
128	Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution. Materials Research Bulletin, 2015, 61, 433-438.	5.2	36
129	Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis. Science of the Total Environment, 2016, 562, 526-532.	8.0	36
130	Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres. Chemosphere, 2017, 169, 413-417.	8.2	36
131	Fenton-oxidation of rifampicin via a green synthesized rGO@nFe/Pd nanocomposite. Journal of Hazardous Materials, 2021, 402, 123544.	12.4	36
132	Potentiometric detection of AFFFs based on MIP. Environmental Technology and Innovation, 2016, 5, 52-59.	6.1	35
133	Speciation of metal–EDTA complexes by flow injection analysis with electrospray ionization mass spectrometry and ion chromatography with inductively coupled plasma mass spectrometry. Journal of Separation Science, 2008, 31, 3796-3802.	2.5	34
134	In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle. Chemosphere, 2018, 193, 618-624.	8.2	34
135	Stripping Voltammetry of Pb(II), Cu(II), and Hg(II) at a Nafion-Coated Glassy Carbon Electrode Modified by Neutral Ionophores. Electroanalysis, 1999, 11, 964-968.	2.9	33
136	Speciation of arsenic by ion chromatography inductively coupled plasma mass spectrometry using ammonium eluents. Journal of Separation Science, 2006, 29, 2671-2676.	2.5	33
137	A combination of bentonite-supported bimetallic Fe/Pd nanoparticles and biodegradation for the remediation of p-chlorophenol in wastewater. Chemical Engineering Journal, 2013, 223, 68-75.	12.7	33
138	Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study. Biodegradation, 2012, 23, 881-895.	3.0	32
139	Toxicity and bioaccumulation of iron in soil microalgae. Journal of Applied Phycology, 2016, 28, 2767-2776.	2.8	32
140	A comparative study of the extractability of arsenic species from silverbeet and amaranth vegetables. Environmental Geochemistry and Health, 2009, 31, 103-113.	3.4	31
141	Simultaneous removal of 2,4-dichlorophenol and Pb(II) from aqueous solution using organoclays: Isotherm, kinetics and mechanism. Journal of Industrial and Engineering Chemistry, 2015, 22, 280-287.	5.8	31
142	Characterization of bentonite modified with humic acid for the removal of Cu (II) and 2,4-dichlorophenol from aqueous solution. Applied Clay Science, 2016, 134, 89-94.	5.2	31
143	Separation and determination of Cr(III) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2001, 436, 59-67.	5.4	30
144	On-column complexation and simultaneous separation of vanadium(IV) and vanadium(V) by capillary electrophoresis with direct UV detection. Analytical and Bioanalytical Chemistry, 2002, 374, 520-525.	3.7	30

#	Article	lF	Citations
145	Removal of interferences in the speciation of chromium using an octopole reaction system in ion chromatography with inductively coupled plasma mass spectrometry. Talanta, 2007, 73, 948-952.	5 . 5	30
146	Fate and wetting potential of bio-refractory organics in membrane distillation for coke wastewater treatment. Chemosphere, 2018, 208, 450-459.	8.2	30
147	Characterization of iron nanoparticles/reduced graphene oxide composites synthesized by one step eucalyptus leaf extract. Environmental Pollution, 2019, 250, 8-13.	7.5	30
148	Reducing the impact of antibiotics in wastewaters: Increased removal of mitoxantrone from wastewater by biosynthesized manganese nanoparticles. Journal of Cleaner Production, 2021, 293, 126207.	9.3	30
149	Green reduction of graphene oxide using Bacillus sphaericus. Journal of Colloid and Interface Science, 2022, 605, 881-887.	9.4	30
150	ON-LINE SOLID-PHASE EXTRACTION AND FLUORESCENCE DETECTION OF SELECTED ENDOCRINE DISRUPTING CHEMICALS IN WATER BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2002, 37, 225-234.	1.5	29
151	Confirmation of vanadium complex formation using electrospray mass spectrometry and determination of vanadium speciation by sample stacking capillary electrophoresis. Analytica Chimica Acta, 2007, 585, 32-37.	5.4	29
152	Burkholderia vietnamiensis CO9V as the functional biomaterial used to remove crystal violet and Cu(II). Ecotoxicology and Environmental Safety, 2014, 105, 1-6.	6.0	29
153	Factors controlling adsorption of recalcitrant organic contaminant from bioâ€treated coking wastewater using lignite activated coke and coal tarâ€derived activated carbon. Journal of Chemical Technology and Biotechnology, 2018, 93, 112-120.	3.2	29
154	Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil. Environmental Pollution, 2020, 258, 113668.	7.5	29
155	Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater. Journal of Environmental Management, 2022, 301, 113838.	7.8	29
156	A Diamine-Based Integrated Absorption–Mineralization Process for Carbon Capture and Sequestration: Energy Savings, Fast Kinetics, and High Stability. Environmental Science & Eamp; Technology, 2018, 52, 13629-13637.	10.0	28
157	A cellulose degrading bacterial strain used to modify rice straw can enhance Cu(II) removal from aqueous solution. Chemosphere, 2020, 256, 127142.	8.2	28
158	Isolation and identification of $17\hat{l}^2$ -estradiol degrading bacteria and its degradation pathway. Journal of Hazardous Materials, 2022, 423, 127185.	12.4	28
159	Remediation of water contaminated with diesel oil using a coupled process: Biological degradation followed by heterogeneous Fenton-like oxidation. Chemosphere, 2017, 183, 286-293.	8.2	27
160	Aerobic denitrification by Paracoccus sp. YF1 in the presence of Cu(II). Science of the Total Environment, 2019, 658, 80-86.	8.0	27
161	Simultaneous determination of inorganic anions, carboxylic and aromatic carboxylic acids by capillary zone electrophoresis with direct UV detection. Journal of Chromatography A, 2002, 942, 289-294.	3.7	26
162	On-column complexation of metal ions using 2,6-pyridinedicarboxylic acid and separation of their anionic complexes by capillary electrophoresis with direct UV detection. Journal of Chromatography A, 2002, 966, 245-251.	3.7	26

#	Article	IF	CITATION
163	Simultaneous separation of nine metal ions and ammonium with nonaqueous capillary electrophoresis. Journal of Chromatography A, 2004, 1022, 217-221.	3.7	26
164	On-capillary complexation of metal ions with 4-(2-thiazolylazo)resorcinol in capillary electrophoresis. Journal of Chromatography A, 2004, 1029, 249-254.	3.7	26
165	Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types. Environmental Science and Pollution Research, 2016, 23, 9822-9831.	5.3	26
166	Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil. Chemosphere, 2017, 175, 294-299.	8.2	26
167	Effect of iron nanoparticles on passivation of cadmium in the pig manure aerobic composting process. Science of the Total Environment, 2019, 690, 900-910.	8.0	26
168	Adsorption and catalytic reduction of rifampicin in wastewaters using hybrid rGO@Fe/Pd nanoparticles. Journal of Cleaner Production, 2020, 264, 121617.	9.3	26
169	Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction. Chemical Engineering Journal, 2014, 255, 55-62.	12.7	25
170	Simultaneous removal of Sb(III) and Sb(V) from mining wastewater by reduced graphene oxide/bimetallic nanoparticles. Science of the Total Environment, 2022, 836, 155704.	8.0	25
171	Simultaneous determination of aliphatic and aromatic acids in plant tissue extracts by ion-exclusion chromatography. Analytica Chimica Acta, 1999, 386, 249-256.	5.4	24
172	Elimination of chloride interference on arsenic speciation in ion chromatography inductively coupled mass spectrometry using an octopole collision/reaction system. Microchemical Journal, 2007, 87, 87-90.	4.5	24
173	Determination of Carboxylic Acids from Plant Root Exudates by Ion Exclusion Chromatography with ESI-MS. Chromatographia, 2008, 67, 113-117.	1.3	24
174	Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater. Journal of Colloid and Interface Science, 2014, 428, 302-307.	9.4	24
175	Pre-adsorption and Fenton-like oxidation of mitoxantrone using hybrid green synthesized rGO/Fe nanoparticles. Chemical Engineering Journal, 2021, 408, 127273.	12.7	24
176	Magnetic iron nanoparticles calcined from biosynthesis for fluoroquinolone antibiotic removal from wastewater. Journal of Cleaner Production, 2021, 319, 128734.	9.3	24
177	Evaluation and characteristics of a Pb(II) ion-selective electrode based on aquatic humic substances. Analytica Chimica Acta, 2000, 418, 205-212.	5.4	23
178	Reactivity of iron-based nanoparticles by green synthesis under various atmospheres and their removal mechanism of methylene blue. RSC Advances, 2015, 5, 70874-70882.	3.6	23
179	Integration of Biodegradation and Nano-Oxidation for Removal of PAHs from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2016, 4, 4717-4723.	6.7	23
180	Simultaneous removal of mixed contaminants triclosan and copper by green synthesized bimetallic iron/nickel nanoparticles. Science of the Total Environment, 2019, 695, 133878.	8.0	23

#	Article	IF	Citations
181	Integration of a diamine solvent based absorption and coal fly ash based mineralisation for CO2 sequestration. Fuel Processing Technology, 2019, 192, 220-226.	7.2	23
182	Removal of As(V) by iron-based nanoparticles synthesized via the complexation of biomolecules in green tea extracts and an iron salt. Science of the Total Environment, $2021,764,142883$.	8.0	23
183	Influence of different types of nanomaterials on soil enzyme activity: A global meta-analysis. Nano Today, 2022, 42, 101345.	11.9	23
184	Simultaneous Determination of Inorganic Anions and Organic Acids in Environmental Samples by Capillary Zone Electrophoresis with Indirect UV Detection. Journal of High Resolution Chromatography, 1999, 22, 379-385.	1.4	22
185	Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1. Aquatic Toxicology, 2013, 142-143, 329-335.	4.0	22
186	High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring. Journal of Crystal Growth, 2018, 492, 122-131.	1.5	22
187	Flow-injection potentiometric detection of metal ions based on tungsten oxide electrode. Electroanalysis, 1997, 9, 141-144.	2.9	21
188	Liquid chromatography of carboxylic acids using potentiometric detection with a tungsten oxide electrode. Analytica Chimica Acta, 1997, 338, 41-49.	5.4	21
189	Preconcentration using diethylenetriaminetetraacetic acid-functionalized polysiloxane (DETAP) for determination of molybdenum(VI) in seawater by ICP?OES. Analytical and Bioanalytical Chemistry, 2003, 376, 728-734.	3.7	21
190	Speciation of vanadium by anion-exchange chromatography with inductively coupled plasma mass spectrometry and confirmation of vanadium complex formation using electrospray mass spectrometry. Journal of Analytical Atomic Spectrometry, 2007, 22, 811.	3.0	21
191	Removal of mixed contaminants, crystal violet, and heavy metal ions by using immobilized stains as the functional biomaterial. RSC Advances, 2016, 6, 67858-67865.	3.6	21
192	Potentiometric detection of aliphatic amines by flow injection analysis and ion-interaction chromatography with a metallic copper electrode. Journal of Chromatography A, 1997, 758, 227-233.	3.7	20
193	Postcombustion Capture of CO ₂ by Diamines Containing One Primary and One Tertiary Amino Group: Reaction Rate and Mechanism. Energy & Energy & 2019, 33, 7500-7508.	5.1	20
194	Mechanism and impact of synthesis conditions on the one-step green synthesis of hybrid RGO@Fe/Pd nanoparticles. Science of the Total Environment, 2020, 710, 136308.	8.0	20
195	A one step synthesis of hybrid Fe/Ni-rGO using green tea extract for the removal of mixed contaminants. Chemosphere, 2021, 284, 131369.	8.2	20
196	Cyclodextrin modified green synthesized graphene oxide@iron nanoparticle composites for enhanced removal of oxytetracycline. Journal of Colloid and Interface Science, 2022, 608, 3159-3167.	9.4	20
197	Synthesis and characterization of Nanoscale Zero-Valent Iron (nZVI) as an adsorbent for the simultaneous removal of As(III) and As(V) from groundwater. Journal of Water Process Engineering, 2022, 47, 102677.	5.6	20
198	Confirmation of lead aminocarboxylic complex formation using electrospray ionization mass spectrometry and speciation by anion-exchange chromatography coupled with ICP-MS. Analytica Chimica Acta, 2007, 599, 163-169.	5.4	19

#	Article	IF	CITATIONS
199	Pathways of reductive degradation of crystal violet in wastewater using free-strain Burkholderia vietnamiensis C09V. Environmental Science and Pollution Research, 2014, 21, 10339-10348.	5.3	19
200	Insights into the Chemical Mechanism for CO $<$ sub $>2sub>(aq) and H<sup>+sup> in Aqueous Diamine Solutions - An Experimental Stopped-Flow Kinetic and <sup>1sup>H/<sup>13sup>C NMR Study of Aqueous Solutions of <i>Ni>,<i>Ni>,<i>Dimethylethylenediamine for Postcombustion CO<sub>2sub> Capture. Environmental Science & CO<sub>2sub> Capture. Environmental Science & CO<sub>10 (aq) and H<sup>10 (aq) and H<sup>11 (aq) and H<sup>12 (aq) and H<sup>13 (aq) and H<sup>14 (aq) and H<sup>15 (aq) and H<sup>15 (aq) and H<sup>16 (aq) and H<sup>16 (aq) and H<sup>16 (aq) and H<sup>16 (aq) and H<sup>17 (aq) and H<sup>18 (aq) $	10.0	19
201	The effects of different types of crop straw on the transformation of pentachlorophenol in flooded paddy soil. Environmental Pollution, 2018, 233, 745-754.	7.5	19
202	Efficient removal of As (â¢) by calcined green synthesized bimetallic Fe/Pd nanoparticles based on adsorption and oxidation. Journal of Cleaner Production, 2021, 286, 124987.	9.3	19
203	Vertical Profiles of Pentachlorophenol and the Microbial Community in a Paddy Soil: Influence of Electron Donors and Acceptors. Journal of Agricultural and Food Chemistry, 2014, 62, 9974-9981.	5.2	18
204	An integrated biodegradation and nano-oxidation used for the remediation of naphthalene from aqueous solution. Chemosphere, 2015, 141, 205-211.	8.2	18
205	Burkholderia cepacia immobilized on eucalyptus leaves used to simultaneously remove malachite green (MG) and Cr(VI). Colloids and Surfaces B: Biointerfaces, 2018, 172, 526-531.	5.0	18
206	Extraction of selenium species in pharmaceutical tablets using enzymatic and chemical methods. Mikrochimica Acta, 2009, 165, 167-172.	5.0	17
207	Simultaneously determining multi-metal ions using an ion selective electrode array system. Environmental Technology and Innovation, 2016, 6, 165-176.	6.1	17
208	Effect of ethanol on the crystallization and phase transformation of MgCO3·3H2O in a MgCl2–CO2–NH3·H2O system. Powder Technology, 2018, 335, 164-170.	4.2	17
209	Reduced graphene oxide/iron nanoparticles used for the removal of Pb (II) by one step green synthesis. Journal of Colloid and Interface Science, 2019, 557, 598-607.	9.4	17
210	Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: A high energy-saving process for CO2 absorption and sequestration. International Journal of Greenhouse Gas Control, 2019, 87, 58-65.	4.6	17
211	Removal of low Sb(V) concentrations from mining wastewater using zeolitic imidazolate framework-8. Journal of Environmental Management, 2021, 287, 112280.	7.8	17
212	Enhanced removal of oxytetracycline from wastewater using bimetallic Fe/Ni nanoparticles combined with ZIF-8 nanocomposites. Journal of Environmental Management, 2022, 318, 115526.	7.8	17
213	Confirmation of iron complex formation using electrospray ionization mass spectrometry (ESI-MS) and sample stacking for analysis of iron polycarboxylate speciation by capillary electrophoresis. Microchemical Journal, 2007, 86, 94-101.	4.5	16
214	Enhanced degradation of malachite by iron nanoparticles encapsulated in sodium alginate beads. Journal of Industrial and Engineering Chemistry, 2019, 77, 238-242.	5.8	16
215	A metallic cobalt electrode for the indirect potentiometric determination of calcium and magnesium in natural waters using flow injection analysis. Talanta, 1998, 47, 779-786.	5.5	15
216	Decontamination of chlorine gas by organic amine modified copper-exchanged zeolite. Microporous and Mesoporous Materials, 2016, 225, 450-455.	4.4	15

#	Article	IF	CITATIONS
217	Determination of Total Petroleum Hydrocarbons in Australian Groundwater Through the Improvised Gas Chromatography–Flame Ionization Detection Technique. Journal of Chromatographic Science, 2017, 55, 775-783.	1.4	15
218	Non-suppressed conductivity and indirect UV detection of carboxylic acids in environmental samples by ion-exclusion chromatography using 2,6-pyridinedicarboxylic acidic eluent. Journal of Chromatography A, 1999, 859, 173-181.	3.7	14
219	On-Line SPE Coupled with LC–APCl–MS for the Determination of Trace Explosives in Water. Chromatographia, 2011, 73, 631-637.	1.3	14
220	Determination of Trace Lead and Cadmium in Water Samples by Anodic Stripping Voltammetry with a Nafionâ€lonic Liquidâ€Coated Bismuth Film Electrode. Electroanalysis, 2014, 26, 639-647.	2.9	14
221	RETENTION BEHAVIOR AND SIMULTANEOUS SEPARATION OF CARBOXYLIC AND AROMATIC ACIDS USING ION-EXCLUSION CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 1999, 22, 2595-2611.	1.0	13
222	Confirmation and determination of carboxylic acids in root exudates using LC–ESIâ€MS. Journal of Separation Science, 2007, 30, 2440-2446.	2.5	13
223	Application of neural networks with novel independent component analysis methodologies to a Prussian blue modified glassy carbon electrode array. Talanta, 2015, 131, 395-403.	5.5	13
224	Removal mechanism of Sb(III) by a hybrid rGO-Fe/Ni composite prepared by green synthesis via a one-step method. Science of the Total Environment, 2021, 788, 147844.	8.0	13
225	Fenton-like oxidation for the simultaneous removal of estrone and \hat{l}^2 -estradiol from wastewater using biosynthesized silver nanoparticles. Separation and Purification Technology, 2022, 285, 120304.	7.9	13
226	Biosynthesis of silver nanoparticles using three different fruit extracts: Characterization, formation mechanism and estrogen removal. Journal of Environmental Management, 2022, 316, 115224.	7.8	13
227	Ferric Ion Selective Electrode Based on Graphite Carbon Electrode. Electroanalysis, 1998, 10, 567-570.	2.9	12
228	ION CHROMATOGRAPHIC SEPARATION OF ANIONS AND CATIONS ON A TITANIA PACKED COLUMN. Journal of Liquid Chromatography and Related Technologies, 2001, 24, 367-380.	1.0	12
229	Heterogeneous Fenton oxidation of Direct Black G in dye effluent using functional kaolin-supported nanoscale zero iron. Environmental Science and Pollution Research, 2014, 21, 1936-1943.	5.3	12
230	Speciation analysis of inorganic tin by on-column complexation ion chromatography with inductively coupled plasma mass spectrometry and electrospray mass spectrometry. Journal of Chromatography A, 2014, 1368, 217-221.	3.7	12
231	Novel methodologies for automatically and simultaneously determining BTEX components using FTIR spectra. Talanta, 2015, 144, 1104-1110.	5. 5	12
232	Zeolite Imidazolate Framework-8 Metal–Organic Frameworks Embedded with Bimetallic Fe/Pd Nanoparticles for Reductive Dechlorination. ACS Applied Nano Materials, 2020, 3, 8088-8095.	5.0	12
233	New insights on removal mechanism of $17\hat{l}_{\pm}$ -estradiol based on adsorption and Fenton-like oxidation by FeNPs/rGO. Separation and Purification Technology, 2022, 283, 120222.	7.9	12
234	Potentiometric detection of carboxylic acids by flow injection analysis using a tungsten oxide electrode. Analytica Chimica Acta, 1996, 332, 187-192.	5 . 4	11

#	Article	IF	CITATIONS
235	Speciation of Znâ€aminopolycarboxylic complexes by electrospray ionization mass spectrometry and ion chromatography with inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 419-424.	1.5	11
236	One-step green synthesis of hybrid Fe-Mn nanoparticles: Methodology, characterization and mechanism. Journal of Cleaner Production, 2022, 363, 132406.	9.3	11
237	Determination of Steroids in Human Urine by Micellar Liquid Chromatography. Analytical Letters, 1997, 30, 2315-2325.	1.8	10
238	Separation and Detection of Metal Ions in Ecological Samples by Capillary Zone Electrophoresis with Indirect UV Detection. Journal of High Resolution Chromatography, 2000, 23, 511-514.	1.4	10
239	Divalent cations impacting on Fenton-like oxidation of amoxicillin using nZVI as a heterogeneous catalyst. Separation and Purification Technology, 2017, 188, 548-552.	7.9	10
240	Removal mechanism of $17\hat{l}^2$ -estradiol by carbonized green synthesis of Fe/Ni nanoparticles. Chemosphere, 2022, 291, 132777.	8.2	10
241	Enhanced 17α-estradiol removal by biosynthesized rGO@Fe NPs using a response surface methodology. Chemical Engineering Research and Design, 2022, 159, 53-60.	5.6	10
242	Synthesis of ferroferric oxide@silicon dioxide/cobalt-based zeolitic imidazole frameworks for the removal of doxorubicin hydrochloride from wastewater. Journal of Colloid and Interface Science, 2022, 624, 108-120.	9.4	10
243	Non-Suppressed Conductivity Detection of Organic Acids in Plant Tissue Extracts by Ion-Exclusion Chromatography with Aromatic Acid Eluents. Journal of Liquid Chromatography and Related Technologies, 1998, 21, 2435-2445.	1.0	9
244	Enhanced selectivity and sensitivity for inorganic anions using an ion-pairing reagent and sample stacking in capillary zone electrophoresis with direct UV detection. Analytical and Bioanalytical Chemistry, 2003, 375, 182-187.	3.7	9
245	Comparison of no gas and He/H2 cell modes used for reduction of isobaric interferences in selenium speciation by ion chromatography with inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 69-75.	2.9	9
246	Onâ€line solidâ€phase extraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of trace tributyltin and triphenyltin in water samples. Rapid Communications in Mass Spectrometry, 2009, 23, 3795-3802.	1.5	9
247	Application of mathematical models and genetic algorithm to simulate the response characteristics of an ion selective electrode array for system recalibration. Chemometrics and Intelligent Laboratory Systems, 2015, 144, 24-30.	3.5	9
248	The toxicity of graphene and its impacting on bioleaching of metal ions from sewages sludge by Acidithiobacillus sp Chemosphere, 2018, 195, 90-97.	8.2	9
249	Artificial intelligence modeling and molecular docking to analyze the laccase delignification process of rice straw by Comamonas testosteroni FJ17. Bioresource Technology, 2022, 345, 126565.	9.6	9
250	Simultaneous removal of arsenite and arsenate from mining wastewater using ZIF-8 embedded with iron nanoparticles. Chemosphere, 2022, 304, 135269.	8.2	9
251	Flow injection, amperometric determination of ethanol in wines after solid-phase extraction. Electroanalysis, 1997, 9, 541-543.	2.9	8
252	Potentiometric detection of metal ions separated by liquid chromatography using a tungsten oxide electrode. Electroanalysis, 1997, 9, 818-821.	2.9	8

#	Article	IF	CITATIONS
253	Separation of Sulfur Species in Water by Co-Electroosmotic Capillary Electrophoresis with Direct and Indirect UV Detection. International Journal of Environmental Analytical Chemistry, 2003, 83, 749-759.	3.3	8
254	Confirmation and Determination of Sugars in Soft Drink Products by IEC with ESI-MS. Chromatographia, 2009, 69, 761-764.	1.3	8
255	Application of neural networks with novel independent component analysis methodologies for the simultaneous determination of cadmium, copper, and lead using an ISE array. Journal of Chemometrics, 2014, 28, 491-498.	1.3	8
256	Green magnetic nanomaterial as antibiotic release vehicle: The release of pefloxacin and ofloxacin. Materials Science and Engineering C, 2021, 118, 111439.	7.3	8
257	Potentiometric detection of ascorbate using a graphite carbon electrode. Talanta, 1999, 49, 661-665.	5.5	7
258	Separation of Rubisco in Extracts of Plant Leaves by Capillary Electrophoresis with Sieving Polymers. Analytical Letters, 2000, 33, 579-587.	1.8	7
259	SPECIATION OF SELENIUM IN BIOLOGICAL SAMPLES BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY. Journal of Liquid Chromatography and Related Technologies, 2010, 33, 1151-1173.	1.0	7
260	Chemical, Mineralogical, and Morphological Characteristics of Pidgeon Magnesium Slag. Environmental Engineering Science, 2016, 33, 290-297.	1.6	7
261	A silicon–potash fertilizer prepared from magnesium slag and how it can improve soil fertility and agronomic performance. Soil Science and Plant Nutrition, 2019, 65, 274-280.	1.9	7
262	Effects of green synthesized and commercial nZVI on crystal violet degradation by Burkholderia vietnamiensis C09V: Dose-dependent toxicity and biocompatibility. Chemosphere, 2021, 279, 130612.	8.2	7
263	Mechanistic insight into the one step green synthesis of hybrid rGO/Fe NPs. Materials Today Nano, 2022, 18, 100193.	4.6	7
264	Potentiometric Detection of Anions Separated by Liquid Chromatography Using a Metallic Silver Wire Electrode. Instrumentation Science and Technology, 1998, 26, 421-431.	1.8	6
265	Reduction of polyatomic interferences during ion-chromatographic speciation of metal ions via their EDTA complexes along with ICP-MS detection using an octopole reaction system. Mikrochimica Acta, 2010, 169, 41-47.	5.0	6
266	Removal of recalcitrant organic pollutants from bio-treated coking wastewater using coal-based carbonaceous materials., 0, 88, 75-84.		5
267	Impact of green reduced graphene oxide on sewage sludge bioleaching with Acidithiobacillus ferrooxidanse. Environmental Pollution, 2020, 267, 115455.	7.5	4
268	Potentiometric Flow Injection Detection of Copper(II) with a Graphite Carbon Electrode. Analytical Letters, 1998, 31, 13-25.	1.8	3
269	Capillary gel electrophoretic separation of superoxide dismutases in leaf extracts of Triticum aestivum L Phytochemical Analysis, 2000, 11, 362-365.	2.4	3
270	Determination of nine emerging pesticides at trace level in aqueous samples using fully automated on-line solid phase extraction coupled with liquid chromatography-mass spectrometry. International Journal of Environmental Analytical Chemistry, 2013, 93, 970-983.	3.3	3

#	Article	IF	CITATIONS
271	Novel recalibration methodologies for ionâ€selective electrode arrays in the multiâ€ion interference scenario. Journal of Chemometrics, 2017, 31, e2870.	1.3	3
272	Characteristics of copper(II) ion-selective electrode based on aquatic humic substances. Electroanalysis, 1997, 9, 1278-1282.	2.9	2
273	Potentiometric flow-injection analysis of alkali and alkaline metals with a tungsten oxide coated nafion film sensor. Laboratory Robotics and Automation, 1997, 9, 201-206.	0.2	2
274	ON-LINE SOLID PHASE EXTRACTION OF PESTICIDE RESIDUES IN NATURAL WATER, COUPLED WITH LIQUID CHROMATOGRAPHY AND UV DETECTION, USING VARIOUS SORBENTS. Journal of Liquid Chromatography and Related Technologies, 2002, 25, 1779-1790.	1.0	2
275	The Effects of Nanoscale Zerovalent Iron on Microbial Fuel Cells in the Startâ€up Process. Advanced Sustainable Systems, 2018, 2, 1700181.	5.3	2
276	Determination of Tetrachloroethene, Trichloroethylene, and Their Metabolites at Trace Levels in Ground Waters by Onâ€Line Solid Phase Extraction/HPLC. Journal of Liquid Chromatography and Related Technologies, 2004, 27, 885-896.	1.0	1
277	Simultaneous removal of co-contaminants: acid brilliant violet and $Cu2+$ by functional bimetallic Fe/Pd nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	1
278	Improved method for the determination of polycyclic aromatic hydrocarbons in contaminated groundwater and soil samples at trace levels employing GC–MSD technique. Environmental Technology and Innovation, 2017, 8, 218-232.	6.1	1
279	Kaolin-supported nanoscale zero-valent iron for removing cationic dye–crystal violet in aqueous solution. , 2012, , 189-196.		1
280	Mechanism for the simultaneous removal of Sb(III) and Sb(V) from mining wastewater by phytosynthesized iron nanoparticles. Chemosphere, 2022, 307, 135778.	8.2	1
281	Influence of Organic Modifiers on the Separation of Carboxylic Acids Using Coâ€EOF Capillary Electrophoresis. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 455-468.	1.0	O