
Ana J Cavaleiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Principles, Advances, and Perspectives of Anaerobic Digestion of Lipids. Environmental Science & Technology, 2022, 56, 4749-4775.	4.6	27
2	Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. Energies, 2022, 15, 4696.	1.6	4
3	Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic Carbon Nanotubes: Contribution of Adsorption and Biodegradation Mechanisms. International Journal of Molecular Sciences, 2021, 22, 2932.	1.8	9
4	Intensification of methane production from waste frying oil in a biogas-lift bioreactor. Renewable Energy, 2021, 168, 1141-1148.	4.3	14
5	Corksorb Enhances Alkane Degradation by Hydrocarbonoclastic Bacteria. Frontiers in Microbiology, 2021, 12, 618270.	1.5	1
6	Hydrocarbon Toxicity towards Hydrogenotrophic Methanogens in Oily Waste Streams. Energies, 2021, 14, 4830.	1.6	3
7	Multi-Walled Carbon Nanotubes Enhance Methanogenesis from Diverse Organic Compounds in Anaerobic Sludge and River Sediments. Applied Sciences (Switzerland), 2020, 10, 8184.	1.3	8
8	Effect of Sub-Stoichiometric Fe(III) Amounts on LCFA Degradation by Methanogenic Communities. Microorganisms, 2020, 8, 1375.	1.6	6
9	Long-Chain Fatty Acids Degradation by Desulfomonile Species and Proposal of "Candidatus Desulfomonile Palmitatoxidansâ€: Frontiers in Microbiology, 2020, 11, 539604.	1.5	13
10	Multiple and flexible roles of facultative anaerobic bacteria in microaerophilic oleate degradation. Environmental Microbiology, 2020, 22, 3650-3659.	1.8	4
11	Coâ€cultivation of Thermoanaerobacter strains with a methanogenic partner enhances glycerol conversion. Microbial Biotechnology, 2020, 13, 962-973.	2.0	3
12	Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresource Technology, 2019, 278, 180-186.	4.8	66
13	Inhibition Studies with 2-Bromoethanesulfonate Reveal a Novel Syntrophic Relationship in Anaerobic Oleate Degradation. Applied and Environmental Microbiology, 2019, 85, .	1.4	30
14	Microbial conversion of oily wastes to methane: Effect of ferric nanomaterials. , 2019, , 339-345.		1
15	Oil and Hydrocarbon-Producing Bacteria. , 2019, , 471-487.		1
16	Enhancement of methane production from 1â€hexadecene by additional electron donors. Microbial Biotechnology, 2018, 11, 657-666.	2.0	11
17	Insight into the Role of Facultative Bacteria Stimulated by Microaeration in Continuous Bioreactors Converting LCFA to Methane. Environmental Science & Technology, 2018, 52, 6497-6507.	4.6	38
18	Improvement of Biomethane Production from Sewage Sludge in Co-digestion with Glycerol and Waste Frying Oil, Using a Design of Experiments. Bioenergy Research, 2018, 11, 763-771.	2.2	15

Ana J Cavaleiro

#	Article	IF	CITATIONS
19	Oil and Hydrocarbon-Producing Bacteria. , 2018, , 1-17.		Ο
20	Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environmental Microbiology, 2017, 19, 2727-2739.	1.8	127
21	Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Applied Microbiology and Biotechnology, 2017, 101, 5163-5173.	1.7	26
22	Microbial Remediation of Organometals and Oil Hydrocarbons in the Marine Environment. , 2017, , 41-66.		5
23	Toxicity of long chain fatty acids towards acetate conversion by <i>Methanosaeta concilii</i> and <i>Methanosarcina mazei</i> . Microbial Biotechnology, 2016, 9, 514-518.	2.0	52
24	Conversion of C _n -Unsaturated into C _{n-2} -Saturated LCFA Can Occur Uncoupled from Methanogenesis in Anaerobic Bioreactors. Environmental Science & Technology, 2016, 50, 3082-3090.	4.6	51
25	Anaerobic Digestion of Lipid-Rich Waste. Springer Protocols, 2015, , 221-236.	0.1	3
26	Anaerobic co-digestion of cork based oil sorbent and cow manure or sludge. , 2015, , 43-48.		0
27	Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass and Bioenergy, 2014, 67, 297-303.	2.9	42
28	Endurance of methanogenic archaea in anaerobic bioreactors treating oleate-based wastewater. Applied Microbiology and Biotechnology, 2013, 97, 2211-2218.	1.7	22
29	The Role of Marine Anaerobic Bacteria and Archaea in Bioenergy Production. , 2013, , 445-469.		3
30	Biochemical methane potential of raw and pre-treated meat-processing wastes. Bioresource Technology, 2013, 129, 519-525.	4.8	42
31	Methane production from oleate: Assessing the bioaugmentation potential of Syntrophomonas zehnderi. Water Research, 2010, 44, 4940-4947.	5.3	40
32	Waste lipids to energy: how to optimize methane production from longâ€chain fatty acids (LCFA). Microbial Biotechnology, 2009, 2, 538-550.	2.0	233
33	Continuous High Rate Anaerobic Treatment of Oleic Acid Based Wastewater is Possible after a Step Feeding Start-Up. Environmental Science & Technology, 2009, 43, 2931-2936.	4.6	65
34	Enhancement of methane production from long chain fatty acid based effluents. Bioresource Technology, 2008, 99, 4086-4095.	4.8	75
35	Accumulation of long chain fatty acids onto anaerobic sludge under steady state and shock loading conditions: effect on acetogenic and methanogenic activity. Water Science and Technology, 2003, 48, 33-40.	1.2	61
36	Microbial and operational response of an anaerobic fixed bed digester to oleic acid overloads. Process Biochemistry, 2001, 37, 387-394.	1.8	20

#	Article	IF	CITATIONS
37	Characterisation by image analysis of anaerobic sludge under shock conditions. Water Science and Technology, 2000, 41, 207-214.	1.2	64