Magerusan Lidia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Frontiers of Materials Science, 2019, 13, 23-32.	2.2	126
2	Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 2016, 6, 2651-2661.	3.6	114
3	Graphene based nanomaterials as chemical sensors for hydrogen peroxide – A comparison study of their intrinsic peroxidase catalytic behavior. Sensors and Actuators B: Chemical, 2015, 213, 474-483.	7.8	93
4	Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sciences, 2017, 70, 13-20.	3.2	79
5	Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials, 2020, 10, 1614.	4.1	74
6	Photocatalytic performance of graphene/TiO2-Ag composites on amaranth dye degradation. Materials Chemistry and Physics, 2016, 179, 232-241.	4.0	64
7	Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection. Electrochimica Acta, 2018, 283, 578-589.	5.2	62
8	Graphene-porphyrin composite synthesis through graphite exfoliation: The electrochemical sensing of catechol. Sensors and Actuators B: Chemical, 2018, 256, 665-673.	7.8	46
9	Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb ²⁺ detection. Nanotechnology, 2017, 28, 114001.	2.6	33
10	Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions: Application to Sunset Yellow voltammetric detection. Microchemical Journal, 2019, 147, 112-120.	4.5	30
11	Graphene–bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A. Nanotechnology, 2016, 27, 484001.	2.6	29
12	Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials. Talanta, 2016, 148, 511-517.	5.5	28
13	Cytotoxicity mechanisms of nitrogen-doped graphene obtained by electrochemical exfoliation of graphite rods, on human endothelial and colon cancer cells. Carbon, 2020, 158, 267-281.	10.3	28
14	Thermally reduced graphene oxide as green and easily available adsorbent for Sunset yellow decontamination. Environmental Research, 2020, 182, 109047.	7.5	26
15	Exfoliation of graphite rods via pulses of current for graphene synthesis: Sensitive detection of 8-hydroxy-2′-deoxyguanosine. Talanta, 2019, 196, 182-190.	5.5	25
16	Enantioanalysis of glutamine—a key factor in establishing the metabolomics process in gastric cancer. Analytical and Bioanalytical Chemistry, 2020, 412, 3199-3207.	3.7	24
17	Diazo transfer at polydopamine – a new way to functionalization. Polymer Chemistry, 2014, 5, 6593-6599.	3.9	22
18	Graphene/TiO ₂ -Ag Based Composites Used as Sensitive Electrode Materials for Amaranth Electrochemical Detection and Degradation. Journal of the Electrochemical Society, 2018, 165, B3054-B3059.	2.9	17

Magerusan Lidia

#	Article	IF	CITATIONS
19	Molecular Enantiorecognition of D- and L-Glucose in Urine and Whole Blood Samples. Journal of the Electrochemical Society, 2019, 166, B3109-B3115.	2.9	16
20	Enantioanalysis of tryptophan in whole blood samples using stochastic sensors—A screening test for gastric cancer. Chirality, 2020, 32, 215-222.	2.6	16
21	Sensitive detection of hydroquinone using exfoliated graphene-Au/glassy carbon modified electrode. Nanotechnology, 2018, 29, 095501.	2.6	14
22	X-ray photoelectron spectroscopy and magnetism of Mn1â^²xAlxNi alloys. Journal of Magnetism and Magnetic Materials, 2009, 321, 3415-3421.	2.3	13
23	Enhancement of peroxidase-like activity of N-doped graphene assembled with iron-tetrapyridylporphyrin. RSC Advances, 2016, 6, 79497-79506.	3.6	13
24	Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts. Process Biochemistry, 2017, 52, 243-249.	3.7	12
25	Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	9
26	Charge transfer-resistance in nitrogen-doped/undoped graphene: Its influence on the electro-catalytic reduction of H 2 O 2. Electrochimica Acta, 2016, 220, 664-671.	5.2	9
27	Magnetic cluster developement in In1â^'x MnxSb semiconductor alloys. Open Physics, 2010, 8, 620-627.	1.7	8
28	Developing novel strategies for the functionalization of core–shell magnetic nanoparticles with folic acid derivatives. Materials Chemistry and Physics, 2015, 162, 131-139.	4.0	8
29	Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	8
30	Hydrothermal Synthesis of Nitrogen, Boron Co-Doped Graphene with Enhanced Electro-Catalytic Activity for Cymoxanil Detection. Sensors, 2021, 21, 6630.	3.8	7
31	X-ray photoelectron spectroscopy and magnetism of Mn1â^'x Alx alloys. Open Physics, 2008, 6, .	1.7	3
32	One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	2
33	Spectroscopic Characterization of Dental Ceramics Composed of Yttrium-Stabilized Zirconium. Analytical Letters, 2018, 51, 2544-2550.	1.8	2
34	MAGNETIC CLUSTERS DEVELOPMENT IN OXIDIZED CeNi ₅ POWDER. Modern Physics Letters B, 2011, 25, 11-20.	1.9	1
35	Synthesis and characterization of new magnetic polydopamine composites. AIP Conference Proceedings, 2013, , .	0.4	1
36	Functionalization of polydopamine coated magnetic nanoparticles with biological entities. AIP Conference Proceedings, 2015, , .	0.4	0