
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223142/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Defective claudin-10 causes a novel variation of HELIX syndrome through compromised tight junction strand assembly. Genes and Diseases, 2022, 9, 1301-1314.                                                                   | 3.4 | 9         |
| 2  | Claudin-10a Deficiency Shifts Proximal Tubular Cl- Permeability to Cation Selectivity via Claudin-2<br>Redistribution. Journal of the American Society of Nephrology: JASN, 2022, 33, 699-717.                                | 6.1 | 20        |
| 3  | Tight junction channels claudinâ€10b and claudinâ€15: Functional mapping of poreâ€lining residues. Annals<br>of the New York Academy of Sciences, 2022, 1515, 129-142.                                                        | 3.8 | 9         |
| 4  | Direct assessment of individual skin barrier components by electrical impedance spectroscopy.<br>Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3094-3106.                                           | 5.7 | 6         |
| 5  | A novel claudin-10 mutation with a unique mechanism in two unrelated families with HELIX syndrome.<br>Kidney International, 2021, 100, 415-429.                                                                               | 5.2 | 11        |
| 6  | Claudinâ€15 forms a water channel through the tight junction with distinct function compared to claudinâ€2. Acta Physiologica, 2020, 228, e13334.                                                                             | 3.8 | 35        |
| 7  | Zinc prevents intestinal epithelial barrier dysfunction induced by alpha-hemolysin-producing<br>Escherichia coli 536 infection in porcine colon. Veterinary Microbiology, 2020, 243, 108632.                                  | 1.9 | 12        |
| 8  | Differential day-night expression of tight junction components in murine retinal pigment epithelium.<br>Experimental Eye Research, 2020, 193, 107985.                                                                         | 2.6 | 14        |
| 9  | Channel functions of claudins in the organization of biological systems. Biochimica Et Biophysica<br>Acta - Biomembranes, 2020, 1862, 183344.                                                                                 | 2.6 | 19        |
| 10 | Paracellular transport of phosphate along the intestine. American Journal of Physiology - Renal<br>Physiology, 2019, 317, G233-G241.                                                                                          | 3.4 | 51        |
| 11 | Phospholipid effects on SGLT1-mediated glucose transport in rabbit ileum brush border membrane vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 182985.                                                    | 2.6 | 1         |
| 12 | The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells.<br>Toxicology in Vitro, 2019, 58, 150-160.                                                                             | 2.4 | 19        |
| 13 | Characterization of Caco-2 cells stably expressing the protein-based zinc probe eCalwy-5 as a model system for investigating intestinal zinc transport. Journal of Trace Elements in Medicine and Biology, 2018, 49, 296-304. | 3.0 | 9         |
| 14 | In Colon Epithelia, Clostridium perfringens Enterotoxin Causes Focal Leaks by Targeting Claudins<br>Which are Apically Accessible Due to Tight Junction Derangement. Journal of Infectious Diseases, 2018,<br>217, 147-157.   | 4.0 | 46        |
| 15 | Deletion of claudin-10 rescues claudin-16–deficient mice from hypomagnesemia and hypercalciuria.<br>Kidney International, 2018, 93, 580-588.                                                                                  | 5.2 | 44        |
| 16 | A comparative study of ammonia transport across ruminal epithelia from <i>Bos indicus</i> crossbreds versus <i>Bos taurus</i> . Animal Science Journal, 2018, 89, 1692-1700.                                                  | 1.4 | 4         |
| 17 | Physiology, pathophysiology, and clinical impact of claudins. Pflugers Archiv European Journal of<br>Physiology, 2017, 469, 1-2.                                                                                              | 2.8 | 7         |
| 18 | Polar and charged extracellular residues conserved among barrierâ€forming claudins contribute to<br>tight junction strand formation. Annals of the New York Academy of Sciences, 2017, 1397, 143-156.                         | 3.8 | 27        |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Tight junction strand formation by claudinâ€10 isoforms and claudinâ€10a/â€10b chimeras. Annals of the<br>New York Academy of Sciences, 2017, 1405, 102-115.                                                                                                         | 3.8  | 33        |
| 20 | Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis. Journal of<br>Dairy Science, 2017, 100, 6662-6675.                                                                                                                        | 3.4  | 35        |
| 21 | Tight junctions of the proximal tubule and their channel proteins. Pflugers Archiv European Journal of Physiology, 2017, 469, 877-887.                                                                                                                               | 2.8  | 36        |
| 22 | Zinc treatment is efficient against Escherichia coli α-haemolysin-induced intestinal leakage in mice.<br>Scientific Reports, 2017, 7, 45649.                                                                                                                         | 3.3  | 31        |
| 23 | Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na <sup>+</sup> and Mg <sup>2+</sup> transport. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E219-E227. | 7.1  | 84        |
| 24 | Water channels and barriers formed by claudins. Annals of the New York Academy of Sciences, 2017, 1397, 100-109.                                                                                                                                                     | 3.8  | 51        |
| 25 | Claudinâ€⊋â€mediated cation and water transport share a common pore. Acta Physiologica, 2017, 219, 521-536.                                                                                                                                                          | 3.8  | 93        |
| 26 | Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Archiv<br>European Journal of Physiology, 2017, 469, 35-44.                                                                                                                  | 2.8  | 54        |
| 27 | Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage. PLoS Genetics, 2017, 13, e1006897.                                                                                                                       | 3.5  | 50        |
| 28 | Altered Cytokine Expression and Barrier Properties after In Vitro Infection of Porcine Epithelial Cells<br>with Enterotoxigenic <i>Escherichia coli</i> and Probiotic <i>Enterococcus faecium</i> . Mediators of<br>Inflammation, 2017, 2017, 1-13.                  | 3.0  | 13        |
| 29 | Zinc strengthens the jejunal barrier by reversibly tightening the paracellular route. American Journal of Physiology - Renal Physiology, 2017, 313, G537-G548.                                                                                                       | 3.4  | 3         |
| 30 | Molecular basis of claudin-17 anion selectivity. Cellular and Molecular Life Sciences, 2016, 73, 185-200.                                                                                                                                                            | 5.4  | 28        |
| 31 | Probing the <i>cis</i> -arrangement of prototype tight junction proteins claudin-1 and claudin-3.<br>Biochemical Journal, 2015, 468, 449-458.                                                                                                                        | 3.7  | 37        |
| 32 | Differences in IgY gut absorption in gastric rainbow trout (Oncorhynchus mykiss) and agastric<br>common carp (Cyprinus carpio) assessed in vivo and in vitro. Comparative Biochemistry and Physiology<br>Part - C: Toxicology and Pharmacology, 2015, 167, 58-64.    | 2.6  | 10        |
| 33 | Claudin-3 and Claudin-5 Protein Folding and Assembly into the Tight Junction Are Controlled by<br>Non-conserved Residues in the Transmembrane 3 (TM3) and Extracellular Loop 2 (ECL2) Segments.<br>Journal of Biological Chemistry, 2014, 289, 7641-7653.            | 3.4  | 76        |
| 34 | α-Haemolysin of <i>Escherichia coli</i> in IBD: a potentiator of inflammatory activity in the colon. Gut, 2014, 63, 1893-1901.                                                                                                                                       | 12.1 | 60        |
| 35 | Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon. British Journal of Nutrition, 2014, 111, 1040-1049.                                                                     | 2.3  | 44        |
| 36 | Molecular and structural transmembrane determinants critical for embedding claudin-5 into tight<br>junctions reveal a distinct four-helix bundle arrangement. Biochemical Journal, 2014, 464, 49-60.                                                                 | 3.7  | 21        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | New insights into intestinal secretion. Gut, 2014, 63, 1371-1372.                                                                                                                                                     | 12.1 | 3         |
| 38 | TcpC protein from E. coli Nissle improves epithelial barrier function involving PKCζ and ERK1/2 signaling in HT-29/B6 cells. Mucosal Immunology, 2014, 7, 369-378.                                                    | 6.0  | 56        |
| 39 | Epithelia of the ovine and bovine forestomach express basolateral maxi-anion channels permeable to<br>the anions of short-chain fatty acids. Pflugers Archiv European Journal of Physiology, 2014, 466,<br>1689-1712. | 2.8  | 23        |
| 40 | A Transgenic Probiotic Secreting a Parasite Immunomodulator for Site-Directed Treatment of Gut<br>Inflammation. Molecular Therapy, 2014, 22, 1730-1740.                                                               | 8.2  | 63        |
| 41 | High-dose dietary zinc oxide mitigates infection with transmissible gastroenteritis virus in piglets.<br>BMC Veterinary Research, 2014, 10, 75.                                                                       | 1.9  | 31        |
| 42 | Paracellular Transport through Healthy and Cystic Fibrosis Bronchial Epithelial Cell Lines – Do We<br>Have a Proper Model?. PLoS ONE, 2014, 9, e100621.                                                               | 2.5  | 27        |
| 43 | In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. Journal of Cell Science, 2013, 126, 554-564.                   | 2.0  | 145       |
| 44 | Claudins and the Modulation of Tight Junction Permeability. Physiological Reviews, 2013, 93, 525-569.                                                                                                                 | 28.8 | 1,043     |
| 45 | Discerning Apical and Basolateral Properties of HT-29/B6 and IPEC-J2 Cell Layers by Impedance<br>Spectroscopy, Mathematical Modeling and Machine Learning. PLoS ONE, 2013, 8, e62913.                                 | 2.5  | 3         |
| 46 | Improved Cell Line IPEC-J2, Characterized as a Model for Porcine Jejunal Epithelium. PLoS ONE, 2013, 8, e79643.                                                                                                       | 2.5  | 83        |
| 47 | Claudins and Other Tight Junction Proteins. , 2012, 2, 1819-1852.                                                                                                                                                     |      | 308       |
| 48 | Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut, 2012, 61, 220-228.                                                                       | 12.1 | 106       |
| 49 | Claudin-17 forms tight junction channels with distinct anion selectivity. Cellular and Molecular Life Sciences, 2012, 69, 2765-2778.                                                                                  | 5.4  | 103       |
| 50 | Tight junctions and differentiation – a chicken or the egg question?. Experimental Dermatology, 2012, 21, 171-175.                                                                                                    | 2.9  | 31        |
| 51 | The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials, 2012, 33, 2791-2800.                                                                          | 11.4 | 108       |
| 52 | Perspectives on tight junction research. Annals of the New York Academy of Sciences, 2012, 1257, 1-19.                                                                                                                | 3.8  | 44        |
| 53 | From TER to trans―and paracellular resistance: lessons from impedance spectroscopy. Annals of the<br>New York Academy of Sciences, 2012, 1257, 142-151.                                                               | 3.8  | 24        |
| 54 | Microbial butyrate and its role for barrier function in the gastrointestinal tract. Annals of the New<br>York Academy of Sciences, 2012, 1258, 52-59.                                                                 | 3.8  | 329       |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chargeâ€selective claudin channels. Annals of the New York Academy of Sciences, 2012, 1257, 20-28.                                                                                                                                    | 3.8 | 96        |
| 56 | Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion.<br>PLoS ONE, 2011, 6, e18107.                                                                                                    | 2.5 | 19        |
| 57 | Oral and Fecal Campylobacter concisus Strains Perturb Barrier Function by Apoptosis Induction in HT-29/B6 Intestinal Epithelial Cells. PLoS ONE, 2011, 6, e23858.                                                                     | 2.5 | 70        |
| 58 | Claudins of intestine and nephron – a correlation of molecular tight junction structure and barrier function. Acta Physiologica, 2011, 201, 133-140.                                                                                  | 3.8 | 125       |
| 59 | Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Laboratory Investigation, 2011, 91, 310-324.                                              | 3.7 | 35        |
| 60 | Aerolysin From Aeromonas hydrophila Perturbs Tight Junction Integrity and Cell Lesion Repair in<br>Intestinal Epithelial HT-29/B6 Cells. Journal of Infectious Diseases, 2011, 204, 1283-1292.                                        | 4.0 | 63        |
| 61 | CNNM2, Encoding a Basolateral Protein Required for Renal Mg2+ Handling, Is Mutated in Dominant<br>Hypomagnesemia. American Journal of Human Genetics, 2011, 88, 333-343.                                                              | 6.2 | 184       |
| 62 | Sheep rumen and omasum primary cultures and source epithelia: barrier function aligns with expression of tight junction proteins. Journal of Experimental Biology, 2011, 214, 2871-2882.                                              | 1.7 | 39        |
| 63 | Biophysical Methods to Study Tight Junction Permeability. Current Topics in Membranes, 2010, , 39-78.                                                                                                                                 | 0.9 | 11        |
| 64 | Targeted deletion of murine <i>Cldn16</i> identifies extra- and intrarenal compensatory mechanisms of<br>Ca <sup>2+</sup> and Mg <sup>2+</sup> wasting. American Journal of Physiology - Renal Physiology,<br>2010, 298, F1152-F1161. | 2.7 | 91        |
| 65 | Disruption of the K+ Channel β-Subunit KCNE3 Reveals an Important Role in Intestinal and Tracheal Clâ^'<br>Transport. Journal of Biological Chemistry, 2010, 285, 7165-7175.                                                          | 3.4 | 95        |
| 66 | Claudin-2, a component of the tight junction, forms a paracellular water channel. Journal of Cell<br>Science, 2010, 123, 1913-1921.                                                                                                   | 2.0 | 345       |
| 67 | Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2048-2057.                                                     | 2.6 | 193       |
| 68 | Norovirus non-structural protein p20 leads to impaired restitution of epithelial defects by inhibition of actin cytoskeleton remodelling. Scandinavian Journal of Gastroenterology, 2010, 45, 1307-1319.                              | 1.5 | 5         |
| 69 | Using an Artificial Neural Network to Determine Electrical Properties of Epithelia. Lecture Notes in<br>Computer Science, 2010, , 211-216.                                                                                            | 1.3 | 0         |
| 70 | Listeriolysin O affects barrier function and induces chloride secretion in HT-29/B6 colon epithelial cells. American Journal of Physiology - Renal Physiology, 2009, 296, G1350-G1359.                                                | 3.4 | 22        |
| 71 | Tricellulin Forms a Barrier to Macromolecules in Tricellular Tight Junctions without Affecting Ion<br>Permeability. Molecular Biology of the Cell, 2009, 20, 3713-3724.                                                               | 2.1 | 288       |
| 72 | Molecular Basis for Cation Selectivity in Claudin-2–based Paracellular Pores: Identification of an<br>Electrostatic Interaction Site. Journal of General Physiology, 2009, 133, 111-127.                                              | 1.9 | 273       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function.<br>Journal of Cell Science, 2009, 122, 1507-1517.                                                              | 2.0  | 170       |
| 74 | Function and regulation of claudins in the thick ascending limb of Henle. Pflugers Archiv European<br>Journal of Physiology, 2009, 458, 77-88.                                                                          | 2.8  | 48        |
| 75 | Claudinâ€16 affects transcellular Cl <sup>â^'</sup> secretion in MDCK cells. Journal of Physiology, 2009, 587, 3777-3793.                                                                                               | 2.9  | 46        |
| 76 | Highâ€Resolution Analysis of Barrier Function. Annals of the New York Academy of Sciences, 2009, 1165, 74-81.                                                                                                           | 3.8  | 26        |
| 77 | Claudin Function in the Thick Ascending Limb of Henle's Loop. Annals of the New York Academy of Sciences, 2009, 1165, 152-162.                                                                                          | 3.8  | 24        |
| 78 | Tight Junction Proteins as Channel Formers and Barrier Builders. Annals of the New York Academy of Sciences, 2009, 1165, 211-219.                                                                                       | 3.8  | 48        |
| 79 | Two-Path Impedance Spectroscopy for Measuring Paracellular and Transcellular Epithelial Resistance.<br>Biophysical Journal, 2009, 97, 2202-2211.                                                                        | 0.5  | 85        |
| 80 | Molecular Basis for Cation Selectivity in Claudin-2–based Paracellular Pores: Identification of an<br>Electrostatic Interaction Site. Journal of Cell Biology, 2009, 184, i3-i3.                                        | 5.2  | 0         |
| 81 | The tight junction protein claudinâ€2 forms a paracellular water channel. FASEB Journal, 2009, 23, 796.5.                                                                                                               | 0.5  | 1         |
| 82 | Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 2007, 56, 61-72.                                             | 12.1 | 1,005     |
| 83 | Quantification of Mg2+ extrusion and cytosolic Mg2+-buffering in Xenopus oocytes. Archives of Biochemistry and Biophysics, 2007, 458, 3-15.                                                                             | 3.0  | 18        |
| 84 | Escherichia2coli ?-haemolysin induces focal leaks in colonic epithelium: a novel mechanism of bacterial<br>translocation. Cellular Microbiology, 2007, 9, 2530-2540.                                                    | 2.1  | 52        |
| 85 | Restitution of single-cell defects in the mouse colon epithelium differs from that of cultured cells.<br>American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290,<br>R1496-R1507. | 1.8  | 32        |
| 86 | TRPV4â€mediated regulation of epithelial permeability. FASEB Journal, 2006, 20, 1802-1812.                                                                                                                              | 0.5  | 106       |
| 87 | The MgtC Virulence Factor of Salmonella enterica Serovar Typhimurium Activates Na + ,K + -ATPase.<br>Journal of Bacteriology, 2006, 188, 5586-5594.                                                                     | 2.2  | 36        |
| 88 | Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. Journal of Clinical Investigation, 2006, 116, 878-891.                                                | 8.2  | 171       |
| 89 | E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO<br>Journal, 2005, 24, 1146-1156.                                                                                     | 7.8  | 395       |
| 90 | Use of Mg2+ and Ca2+ macroelectrodes to measure binding in extracellular-like physiological solutions. Frontiers in Bioscience - Landmark, 2005, 10, 905.                                                               | 3.0  | 4         |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Mg2+-Malate Co-Transport, a Mechanism for Na+-Independent Mg2+ Transport in Neurons of the Leech<br>Hirudo medicinalis. Journal of Neurophysiology, 2005, 94, 441-453.                                                              | 1.8 | 3         |
| 92 | Activation of AMPA/Kainate Receptors but Not Acetylcholine Receptors Causes Mg2+ Influx into<br>Retzius Neurones of the Leech Hirudo medicinalis. Journal of General Physiology, 2003, 122, 727-739.                                | 1.9 | 6         |
| 93 | Determination of [Mg(2+)]i - an update on the use of Mg(2+)-selective electrodes. BioMetals, 2002, 15, 237-249.                                                                                                                     | 4.1 | 19        |
| 94 | Calciumâ€magnesium interactions in pancreatic acinar cells. FASEB Journal, 2001, 15, 659-672.                                                                                                                                       | 0.5 | 61        |
| 95 | Mg-ATP binding: its modification by spermine, the relevance to cytosolic Mg2+ buffering, changes in the intracellular ionized Mg2+ concentration and the estimation of Mg2+ by 31P-NMR. Experimental Physiology, 1999, 84, 231-252. | 2.0 | 13        |
| 96 | Na + -dependent regulation of the free Mg 2+ concentration in neuropile glial cells and P neurones of<br>the leech Hirudo medicinalis. Pflugers Archiv European Journal of Physiology, 1999, 437, 354-362.                          | 2.8 | 13        |