Shu-Biao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6222969/publications.pdf

Version: 2024-02-01

236925 144013 4,419 60 25 57 citations h-index g-index papers 61 61 61 6109 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hyaluronic acid prodrug micelles for tumour therapy. Journal of Drug Targeting, 2022, 30, 22-30.	4.4	3
2	Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS Nano, 2022, 16, 3943-3954.	14.6	14
3	Synthesis of Ag@GQD and their application in photoacoustic imaging and chemical/photothermal combination therapy and bacteriostasis. Journal of Materials Science, 2022, 57, 7056-7067.	3.7	6
4	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	11.0	30
5	Structure–activity relationships of pH-responsive and ionizable lipids for gene delivery. International Journal of Pharmaceutics, 2022, 617, 121596.	5.2	4
6	pH-sensitive hyaluronic acid-targeted prodrug micelles constructed via a one-step reaction for enhanced chemotherapy. International Journal of Biological Macromolecules, 2022, 206, 489-500.	7.5	11
7	pH/reduction dual-responsive hyaluronic acid-podophyllotoxin prodrug micelles for tumor targeted delivery. Carbohydrate Polymers, 2022, 288, 119402.	10.2	21
8	Novel carrier-mediated membrane-assisted three-phase liquid–liquid extraction coupled with liquid chromatography–mass spectrometry for the determination of eight biogenic amines in foods. Food Chemistry, 2022, 387, 132857.	8.2	10
9	Application of "smart―multifunctional nanoprobes in tumor diagnosis and treatment. Journal of Materials Chemistry B, 2022, 10, 3601-3613.	5.8	4
10	Cationic Nanoparticulate System for Codelivery of MicroRNA-424 and Podophyllotoxin as a Multimodal Anticancer Therapy. Molecular Pharmaceutics, 2022, 19, 2092-2104.	4.6	4
11	pH-sensitive, tail-modified, ester-linked ionizable cationic lipids for gene delivery. , 2022, 139, 212984.		3
12	Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydrate Polymers, 2021, 251, 117103.	10.2	69
13	Precise in-situ detection of adsorption kinetics based on fiber-optic sensing with a Y-shaped batch vessel. Instrumentation Science and Technology, 2021, 49, 201-215.	1.8	1
14	Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS Nano, 2021, 15, 6517-6529.	14.6	129
15	Integrin $\hat{l}\pm v\hat{l}^2$ 3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111623.	5.0	28
16	Microneedles for gene and drug delivery in skin cancer therapy. Journal of Controlled Release, 2021, 335, 158-177.	9.9	47
17	Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics, 2021, 11, 7360-7378.	10.0	18
18	Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124054.	4.7	32

#	Article	IF	CITATIONS
19	Anti-breast cancer activity of resveratrol encapsulated in liposomes. Journal of Materials Chemistry B, 2020, 8, 27-37.	5.8	49
20	Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomaterialia, 2020, 102, 13-34.	8.3	148
21	Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Delivery, 2020, 27, 1397-1411.	5.7	22
22	Photothermal therapy. Journal of Controlled Release, 2020, 325, 52-71.	9.9	304
23	Stimuli-Responsive Polysaccharide Enveloped Liposome for Targeting and Penetrating Delivery of survivin-shRNA into Breast Tumor. ACS Applied Materials & Interfaces, 2020, 12, 22074-22087.	8.0	42
24	Lipid and polymer mediated CRISPR/Cas9 gene editing. Journal of Materials Chemistry B, 2020, 8, 4369-4386.	5.8	16
25	Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. Journal of Drug Delivery Science and Technology, 2019, 54, 101316.	3.0	10
26	Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sciences, 2019, 227, 145-152.	4.3	17
27	Zwitterionic pH-responsive hyaluronic acid polymer micelles for delivery of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2019, 178, 412-420.	5.0	38
28	Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Colloids and Surfaces B: Biointerfaces, 2019, 179, 66-76.	5.0	24
29	RGD peptide-based non-viral gene delivery vectors targeting integrin \hat{l}_{\pm} sub>v \hat{l}^{2} sub>3for cancer therapy. Journal of Drug Targeting, 2019, 27, 1-11.	4.4	83
30	Effects of sucrose ester structures on liposome-mediated gene delivery. Acta Biomaterialia, 2018, 72, 278-286.	8.3	21
31	A review on cationic lipids with different linkers for gene delivery. Advances in Colloid and Interface Science, 2018, 253, 117-140.	14.7	107
32	Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicology Research, 2018, 7, 473-479.	2.1	89
33	Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. Journal of Materials Chemistry B, 2018, 6, 7530-7542.	5.8	6
34	Novel carbamate-linked quaternary ammonium lipids containing unsaturated hydrophobic chains for gene delivery. Bioorganic and Medicinal Chemistry, 2018, 26, 3535-3540.	3.0	9
35	Bifunctional cationic solid lipid nanoparticles of \hat{I}^2 -NaYF ₄ :Yb,Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Advances, 2017, 7, 26633-26639.	3.6	15
36	Replacement of quaternary ammonium headgroups by tri-ornithine in cationic lipids for the improvement of gene delivery in vitro and in vivo. Journal of Materials Chemistry B, 2017, 5, 7963-7973.	5.8	16

#	Article	IF	CITATIONS
37	Cationic lioposomes with folic acid as targeting ligand for gene delivery. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4025-4029.	2.2	25
38	Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomaterialia, 2016, 36, 21-41.	8.3	25
39	Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery. Colloids and Surfaces B: Biointerfaces, 2016, 145, 454-461.	5.0	19
40	Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery. Colloids and Surfaces B: Biointerfaces, 2016, 141, 417-422.	5.0	17
41	Tri-peptide cationic lipids for gene delivery. Journal of Materials Chemistry B, 2015, 3, 119-126.	5.8	41
42	Grafting Chitosan with Polyethylenimine in an Ionic Liquid for Efficient Gene Delivery. PLoS ONE, 2015, 10, e0121817.	2.5	35
43	Transmembrane routes of cationic liposome-mediated gene delivery using human throat epidermis cancer cells. Biotechnology Letters, 2014, 36, 1-7.	2.2	19
44	Novel Gemini cationic lipids with carbamate groups for gene delivery. Journal of Materials Chemistry B, 2014, 2, 2920-2928.	5.8	28
45	Structure–activity relationship of carbamate-linked cationic lipids bearing hydroxyethyl headgroup for gene delivery. Colloids and Surfaces B: Biointerfaces, 2013, 112, 537-541.	5.0	11
46	The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjugate Chemistry, 2013, 24, 487-519.	3.6	216
47	Peptide-based cationic liposome-mediated gene delivery. Expert Opinion on Drug Delivery, 2012, 9, 127-139.	5.0	27
48	Synthesis and biological activity of carbamate-linked cationic lipids for gene delivery in vitro. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3837-3841.	2.2	34
49	Preparation of polymer microspheres in supercritical carbon dioxide and their evaluation as coldâ€flow improvers in diesel. Journal of Applied Polymer Science, 2010, 117, 2749-2753.	2.6	0
50	Transfection Efficiency of Cationic Lipids with Different Hydrophobic Domains in Gene Delivery. Bioconjugate Chemistry, 2010, 21, 563-577.	3.6	212
51	Thermal and crystalline properties of water-borne polyurethanes based on IPDI, DMPA, and PEBA/HNA. Journal of Applied Polymer Science, 2007, 103, 1936-1941.	2.6	16
52	Environmentally benign precipitation copolymerization of methacrylate ester and styrene to make polymeric microspheres in supercritical carbon dioxide. Journal of Applied Polymer Science, 2007, 103, 2425-2431.	2.6	8
53	NMR Investigations of Inclusion Complexes between β-Cyclodextrin and Naphthalene/Anthraquinone Derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58, 133-138.	1.6	45
54	1H and 13C NMR investigations of inclusion complexes between \hat{I}^2 -cyclodextrin and naphthalenediamines/phenol derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 59, 65-70.	1.6	12

Shu-Biao Zhang

#	Article	lF	CITATION
55	Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release, 2006, 114, 100-109.	9.9	1,832
56	Phenyltetradecane Sulfonate Isomers for Studying Interfacial Tensions. Petroleum Science and Technology, 2005, 23, 87-94.	1.5	0
57	Dynamic Interfacial Tensions of 1-Phenylalkane Sulfonates. Petroleum Science and Technology, 2004, 22, 1369-1376.	1.5	2
58	Cationic compounds used in lipoplexes and polyplexes for gene delivery. Journal of Controlled Release, 2004, 100, 165-180.	9.9	271
59	Reaction study of water-borne polyurethanes based on isophorone diisocyanate, dimethylol propionic acid, and poly(hexane neopentyl adipate glycol). Journal of Applied Polymer Science, 2004, 92, 161-164.	2.6	26
60	NMR studies of water-borne polyurethanes. Journal of Applied Polymer Science, 2003, 90, 257-260.	2.6	46