
Pieter T J Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6222571/publications.pdf Version: 2024-02-01

DIFTED THOMNSON

#	Article	IF	CITATIONS
1	Navigating the tradeâ€offs between environmental <scp>DNA</scp> and conventional field surveys for improved amphibian monitoring. Ecosphere, 2022, 13, .	1.0	22
2	Beyond single host, single parasite interactions: Quantifying competence for complete multiâ€host, multiâ€parasite communities. Functional Ecology, 2022, 36, 1845-1857.	1.7	5
3	Metabolites from the fungal pathogen <i>Batrachochytrium dendrobatidis</i> (bd) reduce Bd load in Cuban treefrog tadpoles. Journal of Applied Ecology, 2022, 59, 2398-2403.	1.9	5
4	Toxoplasmosis: Recent Advances in Understanding the Link Between Infection and Host Behavior. Annual Review of Animal Biosciences, 2021, 9, 249-264.	3.6	23
5	The cost of travel: How dispersal ability limits local adaptation in host–parasite interactions. Journal of Evolutionary Biology, 2021, 34, 512-524.	0.8	11
6	Why disease ecology needs lifeâ€history theory: a host perspective. Ecology Letters, 2021, 24, 876-890.	3.0	37
7	On thin ice: Linking elevation and longâ€ŧerm losses of lake ice cover. Limnology and Oceanography Letters, 2021, 6, 77-84.	1.6	4
8	Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03432.	1.0	4
9	Why do parasites exhibit reverse latitudinal diversity gradients? Testing the roles of host diversity, habitat and climate. Global Ecology and Biogeography, 2021, 30, 1810-1821.	2.7	14
10	Intercontinental distributions, phylogenetic position and life cycles of species of Apharyngostrigea (Digenea, Diplostomoidea) illuminated with morphological, experimental, molecular and genomic data. International Journal for Parasitology, 2021, 51, 667-683.	1.3	11
11	How predator and parasite size interact to determine consumption of infectious stages. Oecologia, 2021, 197, 551-564.	0.9	4
12	lt's a wormâ€eatâ€worm world: Consumption of parasite freeâ€living stages protects hosts and benefits predators. Journal of Animal Ecology, 2021, , .	1.3	7
13	Catchmentâ€scale observations at the Niwot Ridge <scp>longâ€ŧerm</scp> ecological research site. Hydrological Processes, 2021, 35, e14320.	1.1	3
14	Resilience of native amphibian communities following catastrophic drought: Evidence from a decade of regional-scale monitoring. Biological Conservation, 2021, 263, 109352.	1.9	13
15	Experimental effects of elevated temperature and nitrogen deposition on high-elevation aquatic communities. Aquatic Sciences, 2020, 82, 1.	0.6	3
16	The life aquatic in high relief: shifts in the physical and biological characteristics of alpine lakes along an elevation gradient in the Rocky Mountains, USA. Aquatic Sciences, 2020, 82, 1.	0.6	7
17	Parasite infectious stages provide essential fatty acids and lipid-rich resources to freshwater consumers. Oecologia, 2020, 192, 477-488.	0.9	19
18	The role of warm, dry summers and variation in snowpack on phytoplankton dynamics in mountain lakes. Ecology, 2020, 101, e03132.	1.5	22

#	Article	IF	CITATIONS
19	Biogeography of the freshwater gastropod, Planorbella trivolvis, in the western United States. PLoS ONE, 2020, 15, e0235989.	1.1	11
20	Infection prevalence and pathology of the cymothoid parasite Olencira praegustator in Atlantic menhaden. Invertebrate Biology, 2020, 139, e12300.	0.3	2
21	How parasite exposure and time interact to determine Australapatemon burti (Trematoda: Digenea) infections in second intermediate hosts (Erpobdella microstoma) (Hirudinea: Erpodellidae). Experimental Parasitology, 2020, 219, 108002.	0.5	2
22	Disease's hidden death toll: Using parasite aggregation patterns to quantify landscapeâ€level host mortality in a wildlife system. Journal of Animal Ecology, 2020, 89, 2876-2887.	1.3	12
23	Phenology of alpine zooplankton populations and the importance of lake ice-out. Journal of Plankton Research, 2020, , .	0.8	2
24	Disease hotspots or hot species? Infection dynamics in multiâ€host metacommunities controlled by species identity, not source location. Ecology Letters, 2020, 23, 1201-1211.	3.0	18
25	Towards a mechanistic understanding of competence: a missing link in diversity–disease research. Parasitology, 2020, 147, 1159-1170.	0.7	47
26	Tracking the assembly of nested parasite communities: Using <i>β</i> â€diversity to understand variation in parasite richness and composition over time and scale. Journal of Animal Ecology, 2020, 89, 1532-1542.	1.3	17
27	How host diversity and abundance affect parasite infections: Results from a whole-ecosystem manipulation of bird activity. Biological Conservation, 2020, 248, 108683.	1.9	7
28	Phenological synchrony shapes pathology in host–parasite systems. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192597.	1.2	19
29	Black-spot syndrome in Caribbean fishes linked to trematode parasite infection (Scaphanocephalus) Tj ETQq1 1	0.784314	rgBT /Overloo
30	Black spot syndrome in reef fishes: using archival imagery and field surveys to characterize spatial and temporal distribution in the Caribbean. Coral Reefs, 2019, 38, 1303-1315.	0.9	10
31	An effective method for ecosystemâ€scale manipulation of bird abundance and species richness. Ecology and Evolution, 2019, 9, 9748-9758.	0.8	6
32	Resistance and tolerance: A hierarchical framework to compare individual versus family-level host contributions in an experimental amphibian-trematode system. Experimental Parasitology, 2019, 199, 80-91.	0.5	6
33	Community disassembly and disease: realistic—but not randomized—biodiversity losses enhance parasite transmission. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190260.	1.2	30
34	Chance or choice? Understanding parasite selection and infection in multi-host communities. International Journal for Parasitology, 2019, 49, 407-415.	1.3	14
35	When chytrid fungus invades: integrating theory and data to understand disease-induced amphibian declines. , 2019, , 511-543.		3
36	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	4.7	1,766

#	Article	IF	CITATIONS
37	Endocrine and immune responses of larval amphibians to trematode exposure. Parasitology Research, 2019, 118, 275-288.	0.6	11
38	Comparison of direct and indirect techniques for evaluating endoparasite infections in wild-caught newts (Taricha torosa and T. granulosa). Diseases of Aquatic Organisms, 2019, 134, 137-146.	0.5	2
39	Of poisons and parasites—the defensive role of tetrodotoxin against infections in newts. Journal of Animal Ecology, 2018, 87, 1192-1204.	1.3	24
40	How Temperature, Pond-Drying, and Nutrients Influence Parasite Infection and Pathology. EcoHealth, 2018, 15, 396-408.	0.9	10
41	Parasite richness and abundance within aquatic macroinvertebrates: testing the roles of host―and habitatâ€level factors. Ecosphere, 2018, 9, e02188.	1.0	11
42	Parasites of invasive freshwater fishes and the factors affecting their richness. Freshwater Science, 2018, 37, 134-146.	0.9	19
43	The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage. Freshwater Biology, 2018, 63, 639-651.	1.2	15
44	Nutrient availability and invasive fish jointly drive community dynamics in an experimental aquatic system. Ecosphere, 2018, 9, e02153.	1.0	14
45	Whether larval amphibians school does not affect the parasite aggregation rule: testing the effects of host spatial heterogeneity in field and experimental studies. Oikos, 2018, 127, 99-110.	1.2	5
46	Continentalâ€extent patterns in amphibian malformations linked to parasites, chemical contaminants, and their interactions. Global Change Biology, 2018, 24, e275-e288.	4.2	20
47	Vertically challenged: How disease suppresses Daphnia vertical migration behavior. Limnology and Oceanography, 2018, 63, 886-896.	1.6	8
48	Experimental investigation of alternative transmission functions: Quantitative evidence for the importance of nonlinear transmission dynamics in host–parasite systems. Journal of Animal Ecology, 2018, 87, 703-715.	1.3	12
49	Circadian rhythms of trematode parasites: applying mixed models to test underlying patterns. Parasitology, 2018, 145, 783-791.	0.7	21
50	Using multiâ€response models to investigate pathogen coinfections across scales: Insights from emerging diseases of amphibians. Methods in Ecology and Evolution, 2018, 9, 1109-1120.	2.2	42
51	Parasite metacommunities: Evaluating the roles of host community composition and environmental gradients in structuring symbiont communities within amphibians. Journal of Animal Ecology, 2018, 87, 354-368.	1.3	20
52	Acceptance of the Henry Baldwin Ward Medal for 2018: A Fascination of the Abomination. Journal of Parasitology, 2018, 104, 595-599.	0.3	0
53	Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Nature Communications, 2018, 9, 3926.	5.8	79
54	Large-scale health disparities associated with Lyme disease and human monocytic ehrlichiosis in the United States, 2007–2013. PLoS ONE, 2018, 13, e0204609.	1.1	23

#	Article	IF	CITATIONS
55	Drought attenuates the impact of fish on aquatic macroinvertebrate richness and community composition. Freshwater Biology, 2018, 63, 1457-1468.	1.2	6
56	Risky business: linking <i>Toxoplasma gondii</i> infection and entrepreneurship behaviours across individuals and countries. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180822.	1.2	67
57	Co-exposure to multiple ranavirus types enhances viral infectivity and replication in a larval amphibian system. Diseases of Aquatic Organisms, 2018, 132, 23-35.	0.5	8
58	Drivers of symbiont diversity in freshwater snails: a comparative analysis of resource availability, community heterogeneity, and colonization opportunities. Oecologia, 2017, 183, 927-938.	0.9	6
59	Responses of a wetland ecosystem to the controlled introduction of invasive fish. Freshwater Biology, 2017, 62, 767-778.	1.2	23
60	When can we infer mechanism from parasite aggregation? A constraintâ€based approach to disease ecology. Ecology, 2017, 98, 688-702.	1.5	17
61	Biological and statistical processes jointly drive population aggregation: using host–parasite interactions to understand Taylor's power law. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171388.	1.2	14
62	Noxious newts and their natural enemies: Experimental effects of tetrodotoxin exposure on trematode parasites and aquatic macroinvertebrates. Toxicon, 2017, 137, 120-127.	0.8	15
63	Host and parasite thermal acclimation responses depend on the stage of infection. Journal of Animal Ecology, 2016, 85, 1014-1024.	1.3	24
64	Tickâ€; mosquitoâ€; and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	1.0	31
65	Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection. EcoHealth, 2016, 13, 383-391.	0.9	17
66	How Does Space Influence the Relationship Between Host and Parasite Diversity?. Journal of Parasitology, 2016, 102, 485-494.	0.3	17
67	Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophysical Research Letters, 2016, 43, 5353-5360.	1.5	93
68	The macroecology of infectious diseases: a new perspective on globalâ€scale drivers of pathogen distributions and impacts. Ecology Letters, 2016, 19, 1159-1171.	3.0	126
69	Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Scientific Reports, 2016, 6, 25625.	1.6	196
70	Habitat heterogeneity drives the hostâ€diversityâ€begetsâ€parasiteâ€diversity relationship: evidence from experimental and field studies. Ecology Letters, 2016, 19, 752-761.	3.0	85
71	The Rise of Disease Ecology and Its Implications for Parasitology— A Review. Journal of Parasitology, 2016, 102, 397-409.	0.3	9
72	Parasite infection alters nitrogen cycling at the ecosystem scale. Journal of Animal Ecology, 2016, 85, 817-828.	1.3	25

#	Article	IF	CITATIONS
73	Disease Ecology Meets Ecosystem Science. Ecosystems, 2016, 19, 737-748.	1.6	73
74	Endohelminths in Bird Hosts from Northern California and an Analysis of the Role of Life History Traits on Parasite Richness. Journal of Parasitology, 2016, 102, 199-207.	0.3	19
75	Integrating occupancy models and structural equation models to understand species occurrence. Ecology, 2016, 97, 765-775.	1.5	34
76	Multilevel Models for the Distribution of Hosts and Symbionts. PLoS ONE, 2016, 11, e0165768.	1.1	7
77	Integrating occupancy models and structural equation models to understand species occurrence. Ecology, 2016, , .	1.5	1
78	Integrating occupancy models and structural equation models to understand species occurrence. Ecology, 2016, 97, 765-75.	1.5	19
79	Frontiers in research on biodiversity and disease. Ecology Letters, 2015, 18, 1119-1133.	3.0	195
80	lt's a predator–eat–parasite world: how characteristics of predator, parasite and environment affect consumption. Oecologia, 2015, 178, 537-547.	0.9	41
81	Using multispecies occupancy models to improve the characterization and understanding of metacommunity structure. Ecology, 2015, 96, 1783-1792.	1.5	28
82	Integrating landscape connectivity and habitat suitability to guide offensive and defensive invasive species management. Journal of Applied Ecology, 2015, 52, 366-378.	1.9	44
83	How temperature shifts affect parasite production: testing the roles of thermal stress and acclimation. Functional Ecology, 2015, 29, 941-950.	1.7	47
84	Quantifying larval trematode infections in hosts: A comparison of method validity and implications for infection success. Experimental Parasitology, 2015, 154, 155-162.	0.5	13
85	A world without parasites: exploring the hidden ecology of infection. Frontiers in Ecology and the Environment, 2015, 13, 425-434.	1.9	106
86	Why infectious disease research needs community ecology. Science, 2015, 349, 1259504.	6.0	330
87	Experimental Infections of Bluegill with the Trematode <i>Ribeiroia ondatrae</i> (Digenea:) Tj ETQq1 1 0.78431 27, 185-191.	4 rgBT /Ov 0.6	verlock 10 Tf 3 10
88	Experimental warming drives a seasonal shift in the timing of hostâ€parasite dynamics with consequences for disease risk. Ecology Letters, 2014, 17, 445-453.	3.0	75
89	Combined influence of hydroperiod and parasitism on larval amphibian development. Freshwater Science, 2014, 33, 941-949.	0.9	7
90	Predation and disease: understanding the effects of predators at several trophic levels on pathogen transmission. Freshwater Biology, 2014, 59, 1064-1075.	1.2	18

#	Article	IF	CITATIONS
91	Heterogeneous hosts: how variation in host size, behaviour and immunity affects parasite aggregation. Journal of Animal Ecology, 2014, 83, 1103-1112.	1.3	57
92	Making the right choice: testing the drivers of asymmetric infections within hosts and their consequences for pathology. Oikos, 2014, 123, 875-885.	1.2	9
93	Complex life cycles in a pond food web: effects of life stage structure and parasites on network properties, trophic positions and the fit of a probabilistic niche model. Oecologia, 2014, 174, 953-965.	0.9	14
94	Natural enemy ecology: comparing the effects of predation risk, infection risk and disease on host behaviour. Functional Ecology, 2014, 28, 1472-1481.	1.7	20
95	Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia, 2013, 173, 1471-1480.	0.9	90
96	Experimental infection dynamics: using immunosuppression and in vivo parasite tracking to understand host resistance in an amphibian-trematode system. Journal of Experimental Biology, 2013, 216, 3700-8.	0.8	36
97	Chytrid fungus <i>Batrachochytrium dendrobatidis</i> has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 210-215.	3.3	153
98	Urbanization and wetland communities: applying metacommunity theory to understand the local and landscape effects. Journal of Applied Ecology, 2013, 50, 34-42.	1.9	80
99	Biodiversity decreases disease through predictable changes in host community competence. Nature, 2013, 494, 230-233.	13.7	288
100	Evaluating the role of regional and local processes in structuring a larval trematode metacommunity of <i>Helisoma trivolvis</i> . Ecography, 2013, 36, 854-863.	2.1	41
101	Biomass and productivity of trematode parasites in pond ecosystems. Journal of Animal Ecology, 2013, 82, 509-517.	1.3	94
102	Taming wildlife disease: bridging the gap between science and management. Journal of Applied Ecology, 2013, 50, 702-712.	1.9	87
103	Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission. Oikos, 2013, 122, 1473-1482.	1.2	51
104	Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. Science, 2013, 341, 514-519.	6.0	951
105	Investigating the dispersal routes used by an invasive amphibian, Lithobates catesbeianus, in human-dominated landscapes. Biological Invasions, 2013, 15, 2179-2191.	1.2	23
106	Using physiology to understand climate-driven changes in disease and their implications for conservation. , 2013, 1, cot022-cot022.		54
107	Host and parasite diversity jointly control disease risk in complex communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16916-16921.	3.3	124
108	Quantifying the biomass of parasites to understand their role in aquatic communities. Ecology and Evolution, 2013, 3, 2310-2321.	0.8	21

#	Article	IF	CITATIONS
109	Localized Hotspots Drive Continental Geography of Abnormal Amphibians on U.S. Wildlife Refuges. PLoS ONE, 2013, 8, e77467.	1.1	18
110	Community ecology of invasions: direct and indirect effects of multiple invasive species on aquatic communities. Ecology, 2012, 93, 1254-1261.	1.5	85
111	Importance of Native Amphibians in the Diet and Distribution of the Aquatic Gartersnake (<i>Thamnophis atratus</i>) in the San Francisco Bay Area of California. Journal of Herpetology, 2012, 46, 221-227.	0.2	7
112	Food web including infectious agents for a California freshwater pond. Ecology, 2012, 93, 1760-1760.	1.5	13
113	Widespread Co-occurrence of Virulent Pathogens Within California Amphibian Communities. EcoHealth, 2012, 9, 288-292.	0.9	43
114	A Practical Guide for the Study of Malformed Amphibians and Their Causes. Journal of Herpetology, 2012, 46, 429-441.	0.2	24
115	Macroparasite Infections of Amphibians: What Can They Tell Us?. EcoHealth, 2012, 9, 342-360.	0.9	100
116	Using an ecosystemâ€level manipulation to understand hostâ€parasite interactions and how they vary with study venue. Ecosphere, 2012, 3, 1-18.	1.0	12
117	Temperatureâ€driven shifts in a hostâ€parasite interaction drive nonlinear changes in disease risk. Global Change Biology, 2012, 18, 3558-3567.	4.2	71
118	Species diversity reduces parasite infection through cross-generational effects on host abundance. Ecology, 2012, 93, 56-64.	1.5	52
119	From superspreaders to disease hotspots: linking transmission across hosts and space. Frontiers in Ecology and the Environment, 2012, 10, 75-82.	1.9	237
120	Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1688-1707.	1.8	127
121	Parasite diversity and coinfection determine pathogen infection success and host fitness. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9006-9011.	3.3	147
122	Parasite transmission in complex communities: Predators and alternative hosts alter pathogenic infections in amphibians. Ecology, 2012, 93, 1247-1253.	1.5	75
123	Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecology Letters, 2012, 15, 235-242.	3.0	224
124	Parasite competition hidden by correlated coinfection: using surveys and experiments to understand parasite interactions. Ecology, 2011, 92, 535-541.	1.5	89
125	Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). , 2011, 21, 2587-2599.		41
126	Linking Larvae and Adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) Using Molecular Data. Journal of Parasitology, 2011, 97, 846-851.	0.3	65

#	Article	IF	CITATIONS
127	Frontiers in climate change–disease research. Trends in Ecology and Evolution, 2011, 26, 270-277.	4.2	273
128	Ecomorphology and disease: cryptic effects of parasitism on host habitat use, thermoregulation, and predator avoidance. Ecology, 2011, 92, 542-548.	1.5	22
129	The ecology and emergence of diseases in fresh waters. Freshwater Biology, 2011, 56, 638-657.	1.2	71
130	High temperature enhances host pathology in a snail–trematode system: possible consequences of climate change for the emergence of disease. Freshwater Biology, 2011, 56, 767-778.	1.2	97
131	Critical windows of disease risk: amphibian pathology driven by developmental changes in host resistance and tolerance. Functional Ecology, 2011, 25, 726-734.	1.7	78
132	Regional Decline of an Iconic Amphibian Associated with Elevation, Land-Use Change, and Invasive Species. Conservation Biology, 2011, 25, 556-566.	2.4	61
133	The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Annals of the New York Academy of Sciences, 2011, 1223, 108-119.	1.8	227
134	Land Use and Wetland Spatial Position Jointly Determine Amphibian Parasite Communities. EcoHealth, 2011, 8, 485-500.	0.9	31
135	Chytrid infection reduces thoracic beat and heart rate of Daphnia pulicaria. Hydrobiologia, 2011, 668, 147-154.	1.0	11
136	Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission. Oecologia, 2011, 165, 1043-1050.	0.9	81
137	Individual and combined effects of multiple pathogens on Pacific treefrogs. Oecologia, 2011, 166, 1029-1041.	0.9	36
138	Experimental Exposure of Helisoma trivolvis and Biomphalaria glabrata (Gastropoda) to Ribeiroia ondatrae (Trematoda). Journal of Parasitology, 2011, 97, 1055-1061.	0.3	2
139	Disease and the Extended Phenotype: Parasites Control Host Performance and Survival through Induced Changes in Body Plan. PLoS ONE, 2011, 6, e20193.	1.1	67
140	Chapter Four. Influence of Eutrophication on Disease in Aquatic Ecosystems: Patterns, Processes, and Predictions. , 2010, , 71-99.		6
141	Blastocladian parasites of invertebrates. Fungal Biology Reviews, 2010, 24, 56-67.	1.9	32
142	Distribution and community-level effects of the Chinese mystery snail (Bellamya chinensis) in northern Wisconsin lakes. Biological Invasions, 2010, 12, 1591-1605.	1.2	45
143	Do predators cause frog deformities? The need for an ecoâ€epidemiological approach. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 515-518.	0.6	13
144	When an infection turns lethal. Nature, 2010, 465, 881-882.	13.7	6

9

#	Article	IF	CITATIONS
145	Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecological Applications, 2010, 20, 16-29.	1.8	213
146	Sublethal predators and their injured prey: linking aquatic predators and severe limb abnormalities in amphibians. Ecology, 2010, 91, 242-251.	1.5	45
147	When parasites become prey: ecological and epidemiological significance of eating parasites. Trends in Ecology and Evolution, 2010, 25, 362-371.	4.2	253
148	Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology, 2010, 213, 961-970.	0.8	262
149	A Decade of Deformities. , 2010, , 511-536.		22
150	Ulcerative disease outbreak in crayfish Orconectes propinquus linked to Saprolegnia australis in Big Muskellunge Lake, Wisconsin. Diseases of Aquatic Organisms, 2010, 91, 57-66.	0.5	16
151	Community diversity reduces <i>Schistosoma mansoni</i> transmission, host pathology and human infection risk. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1657-1663.	1.2	81
152	Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia, 2009, 159, 161-170.	0.9	138
153	All hosts are not equal: explaining differential patterns of malformations in an amphibian community. Journal of Animal Ecology, 2009, 78, 191-201.	1.3	49
154	The Meaning behind Malformed Frogs. Conservation Biology, 2009, 23, 508-511.	2.4	0
155	Effects of environmental change on helminth infections in amphibians: exploring the emergence of Ribeiroia and Echinostoma infections in North America , 2009, , 249-280.		31
156	Longâ€ŧerm disease dynamics in lakes: causes and consequences of chytrid infections in <i>Daphnia</i> populations. Ecology, 2009, 90, 132-144.	1.5	38
157	Morphology, Molecular Phylogeny, and Ecology of <i>Binucleata daphniae</i> n. g., n. sp. (Fungi:) Tj ETQq1 1 0.7 Eukaryotic Microbiology, 2008, 55, 393-408.	784314 rg 0.8	BT /Overlock 38
158	Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.	3.0	716
159	Diversity and disease: community structure drives parasite transmission and host fitness. Ecology Letters, 2008, 11, 1017-1026.	3.0	106
160	Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment, 2008, 6, 357-363.	1.9	457
161	FESTERING FOOD: CHYTRIDIOMYCETE PATHOGEN REDUCES QUALITY OF <i>DAPHNIA</i> HOST AS A FOOD RESOURCE. Ecology, 2008, 89, 2692-2699.	1.5	21
162	Aquatic eutrophication promotes pathogenic infection in amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15781-15786.	3.3	296

#	Article	IF	CITATIONS
163	Understanding Regional Change: A Comparison of Two Lake Districts. BioScience, 2007, 57, 323-335.	2.2	129
164	DINING ON DISEASE: HOW INTERACTIONS BETWEEN INFECTION AND ENVIRONMENT AFFECT PREDATION RISK. Ecology, 2006, 87, 1973-1980.	1.5	119
165	ADDING INFECTION TO INJURY: SYNERGISTIC EFFECTS OF PREDATION AND PARASITISM ON AMPHIBIAN MALFORMATIONS. Ecology, 2006, 87, 2227-2235.	1.5	47
166	Chytrid infections of Daphnia pulicaria: development, ecology, pathology and phylogeny of Polycaryum laeve. Freshwater Biology, 2006, 51, 634-648.	1.2	58
167	Amphibian diversity: Decimation by disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3011-3012.	3.3	14
168	In vitro excystment of the metacercariae of Ribeiroia ondatrae. Parasitology Research, 2005, 95, 293-295.	0.6	2
169	A MOLECULAR PHYLOGENETIC STUDY OF THE GENUS RIBEIROIA (DIGENEA): TREMATODES KNOWN TO CAUSE LIMB MALFORMATIONS IN AMPHIBIANS. Journal of Parasitology, 2005, 91, 1040-1045.	0.3	39
170	Parasite Infection and Limb Malformations: A Growing Problem in Amphibian Conservation. , 2005, , 124-138.		16
171	Parasites in the food web: linking amphibian malformations and aquatic eutrophication. Ecology Letters, 2004, 7, 521-526.	3.0	134
172	Review of the Trematode Genus Ribeiroia (Psilostomidae): Ecology, Life History and Pathogenesis with Special Emphasis on the Amphibian Malformation Problem. Advances in Parasitology, 2004, 57, 191-253.	1.4	108
173	Amphibian deformities and Ribeiroia infection: an emerging helminthiasis. Trends in Parasitology, 2003, 19, 332-335.	1.5	82
174	Limb Deformities as an Emerging Parasitic Disease in Amphibians: Evidence from Museum Specimens and Resurvey Data. Conservation Biology, 2003, 17, 1724-1737.	2.4	81
175	Explaining Frog Deformities. Scientific American, 2003, 288, 60-65.	1.0	35
176	The complexity of deformed amphibians. Frontiers in Ecology and the Environment, 2003, 1, 87-94.	1.9	144
177	Timing of Trematode-Related Malformations in Oregon Spotted Frogs and Pacific Treefrogs. , 2003, 84, 142.		8
178	Biased sex ratios in fiddler crabs (Brachyura, Ocypodidae): a review and evaluation of the influence of sampling method, size class, and sex-specific mortality. Crustaceana, 2003, 76, 559-580.	0.1	63
179	PARASITE (RIBEIROIA ONDATRAE) INFECTION LINKED TO AMPHIBIAN MALFORMATIONS IN THE WESTERN UNITED STATES. Ecological Monographs, 2002, 72, 151-168.	2.4	179
180	PARASITE (RIBEIROIA ONDATRAE) INFECTION LINKED TO AMPHIBIAN MALFORMATIONS IN THE WESTERN UNITED STATES. , 2002, 72, 151.		2

#	Article	IF	CITATIONS
181	Regular Articles / Articles Réguliers <i>Ribeiroia ondatrae</i> (Trematoda: Digenea) infection induces severe limb malformations in western toads (<i>Bufo boreas</i>). Canadian Journal of Zoology, 2001, 79, 370-379.	0.4	55
182	Regular Articles / Articles Réguliers <p><i>Ribeiroia ondatrae</i> (Trematoda: Digenea) infection induces severe limb malformations in western toads (<i>Bufo boreas</i>). Canadian Journal of Zoology, 2001, 79, 370-379.</p>	0.4	64