Alireza Joshaghani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6222520/publications.pdf Version: 2024-02-01

Δυρέζα Ισεμασμανί

#	Article	IF	CITATIONS
1	Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review. Construction and Building Materials, 2018, 181, 27-41.	3.2	161
2	Optimizing pervious concrete pavement mixture design by using the Taguchi method. Construction and Building Materials, 2015, 101, 317-325.	3.2	129
3	Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Construction and Building Materials, 2017, 134, 116-122.	3.2	129
4	Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC. Construction and Building Materials, 2017, 147, 497-509.	3.2	120
5	Influence of fibers on drying shrinkage in restrained concrete. Construction and Building Materials, 2017, 148, 833-845.	3.2	118
6	Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study. Construction and Building Materials, 2020, 245, 118444.	3.2	105
7	Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Construction and Building Materials, 2017, 152, 818-831.	3.2	99
8	Optimizing the mixture design of polymer concrete: An experimental investigation. Construction and Building Materials, 2018, 167, 185-196.	3.2	86
9	Enhancing the permeability and abrasion resistance of concrete using colloidal nano-SiO2 oxide and spraying nanosilicon practices. Construction and Building Materials, 2017, 146, 128-135.	3.2	76
10	Effect of controlled environmental conditions on mechanical, microstructural and durability properties of cement mortar. Construction and Building Materials, 2018, 164, 134-149.	3.2	67
11	Evaluating the Effects of Sugarcane-Bagasse Ash and Rice-Husk Ash on the Mechanical and Durability Properties of Mortar. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	45
12	The effect of trass and fly ash in minimizing alkali-carbonate reaction in concrete. Construction and Building Materials, 2017, 150, 583-590.	3.2	30
13	Effects of the mechanical milling method on transport properties of self-compacting concrete containing perlite powder as a supplementary cementitious material. Construction and Building Materials, 2018, 172, 677-684.	3.2	30
14	A comprehensive experimental study on the performance of pumice powder in self-compacting concrete (SCC). Journal of Sustainable Cement-Based Materials, 2018, 7, 340-356.	1.7	29
15	Effects of supplementary cementitious materials on mechanical and durability properties of high-performance non-shrinking grout (HPNSC). Journal of Sustainable Cement-Based Materials, 2018, 7, 38-56.	1.7	22
16	Mechanical Characteristics of Cement Paste in the Presence of Carbon Nanotubes and Silica Oxide Nanoparticles: An Experimental Study. Materials, 2021, 14, 1347.	1.3	22
17	Concrete pavements curing evaluation with non-destructive tests. Construction and Building Materials, 2017, 154, 1250-1262.	3.2	21
18	Physical and mechanical properties of polymer modified self-compacting concrete (SCC) using natural and recycled aggregates, Journal of Sustainable Cement-Based Materials, 2020, 9, 1-16	1.7	21

Alireza Joshaghani

#	Article	IF	CITATIONS
19	Feasibility of Alkali-Activated Slag Paste as Injection Material for Rehabilitation of Concrete Structures. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	14
20	Identifying the problematic areas with structural deficiencies of pavements using non-destructive tests (NDT). International Journal of Pavement Engineering, 2019, 20, 1359-1369.	2.2	13
21	Ground penetrating radar (GPR) applications in concrete pavements. International Journal of Pavement Engineering, 2022, 23, 4504-4531.	2.2	13
22	Evaluating the effects of titanium dioxide (TiO2) and carbon-nanofibers (CNF) as cement partial replacement on concrete properties. MOJ Civil Engineering, 2018, 4, 29-38.	0.3	13
23	Towards Eco-Flowable Concrete Production. Sustainability, 2020, 12, 1208.	1.6	10
24	Mechanical Characteristic of Pervious Concrete Considering the Gradation and Size of Coarse Aggregates. Research Journal of Environmental and Earth Sciences, 2014, 6, 437-442.	0.1	9
25	Investigating the Effects of Curing Quality on Key Concrete Pavement Surface Properties. Transportation Research Record, 2019, 2673, 71-80.	1.0	9
26	Evaluating the effects titanium dioxide on resistance of cement mortar against combined chloride and sulfate attack. Structural Concrete, 2018, 19, 1318-1327.	1.5	6
27	Evaluating the Quality of Curing Applications on Concrete Pavements with Ground-Penetrating Radar. Transportation Research Record, 2021, 2675, 106-120.	1.0	5
28	Assessment of Concrete Pavement Set Gradient Based on Analysis of Slab Behavior and Field Test Data. Transportation Research Record, 2019, 2673, 512-523.	1.0	4
29	Empirical correlation between mortars mechanical and durability tests with different cementitious materials replacements. Advances in Cement Research, 2020, 32, 169-180.	0.7	2
30	Optimization of Coupled Shear Walls Openings Dimensions under Static Loading using Continuous Method. KSCE Journal of Civil Engineering, 2018, 22, 5074-5083.	0.9	1
31	Evaluation of mechanical characteristics of concrete beams under constant loading with alkali-silica reaction. International Journal of Structural Engineering, 2017, 8, 327.	0.3	0
32	Experimental Study on the Use of Trass as a Supplementary Cementitious Material in Pervious Concrete. Journal of Environmental Science and Engineering - A, 2017, 6, .	0.1	0