Otto Lappi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6222191/publications.pdf

Version: 2024-02-01

430874 477307 43 905 18 29 h-index citations g-index papers 44 44 44 717 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tracking an occluded visual target with sequences of saccades. Journal of Vision, 2022, 22, 9.	0.3	O
2	Gaze Strategies in Driving–An Ecological Approach. Frontiers in Psychology, 2022, 13, 821440.	2.1	7
3	Egocentric Chunking in the Predictive Brain: A Cognitive Basis of Expert Performance in High-Speed Sports. Frontiers in Human Neuroscience, 2022, 16, 822887.	2.0	1
4	Dynamic scan paths investigations under manual and highly automated driving. Scientific Reports, 2021, 11, 3776.	3.3	10
5	Visual anticipation of the future path: Predictive gaze and steering. Journal of Vision, 2021, 21, 25.	0.3	7
6	Inattention and Uncertainty in the Predictive Brain. Frontiers in Neuroergonomics, 2021, 2, .	1.1	4
7	The link between flow and performance is moderated by task experience. Computers in Human Behavior, 2021, 124, 106891.	8.5	9
8	Action control, forward models and expected rewards: representations in reinforcement learning. SynthÃ^se, 2021, 199, 14017.	1.1	0
9	Editorial: High Performance Cognition: Information-Processing in Complex Skills, Expert Performance, and Flow. Frontiers in Psychology, 2020, 11, 579950.	2.1	3
10	Humans use Optokinetic Eye Movements to Track Waypoints for Steering. Scientific Reports, 2020, 10, 4175.	3.3	12
11	Flow Experiences During Visuomotor Skill Acquisition Reflect Deviation From a Power-Law Learning Curve, but Not Overall Level of Skill. Frontiers in Psychology, 2019, 10, 1126.	2.1	10
12	Effect of Meditative Movement on Affect and Flow in Qigong Practitioners. Frontiers in Psychology, 2019, 10, 2375.	2.1	18
13	Looking at the Road When Driving Around Bends: Influence of Vehicle Automation and Speed. Frontiers in Psychology, 2019, 10, 1699.	2.1	11
14	Humans Use Predictive Gaze Strategies to Target Waypoints for Steering. Scientific Reports, 2019, 9, 8344.	3.3	23
15	Getting Back Into the Loop: The Perceptual-Motor Determinants of Successful Transitions out of Automated Driving. Human Factors, 2019, 61, 1037-1065.	3.5	38
16	Effects of an active visuomotor steering task on covert attention. Journal of Eye Movement Research, 2019, 12, .	0.8	3
17	Gaze doesn't always lead steering. Accident Analysis and Prevention, 2018, 121, 268-278.	5.7	13
18	A computational model for driver's cognitive state, visual perception and intermittent attention in a distracted car following task. Royal Society Open Science, 2018, 5, 180194.	2.4	17

#	Article	IF	Citations
19	The Racer's Mindâ€"How Core Perceptual-Cognitive Expertise Is Reflected in Deliberate Practice Procedures in Professional Motorsport. Frontiers in Psychology, 2018, 9, 1294.	2.1	3
20	Visuomotor control, eye movements, and steering: A unified approach for incorporating feedback, feedforward, and internal models Psychological Bulletin, 2018, 144, 981-1001.	6.1	45
21	A new and general approach to signal denoising and eye movement classification based on segmented linear regression. Scientific Reports, 2017, 7, 17726.	3.3	51
22	Systematic Observation of an Expert Driver's Gaze Strategyâ€"An On-Road Case Study. Frontiers in Psychology, 2017, 8, 620.	2.1	46
23	Trade-off between jerk and time headway as an indicator of driving style. PLoS ONE, 2017, 12, e0185856.	2.5	19
24	Task-Difficulty Homeostasis in Car Following Models: Experimental Validation Using Self-Paced Visual Occlusion. PLoS ONE, 2017, 12, e0169704.	2.5	15
25	Eye movements in the wild: Oculomotor control, gaze behavior & amp; frames of reference. Neuroscience and Biobehavioral Reviews, 2016, 69, 49-68.	6.1	58
26	On computational explanations. SynthÈse, 2016, 193, 3931-3949.	1.1	9
27	The Racer's Brain – How Domain Expertise is Reflected in the Neural Substrates of Driving. Frontiers in Human Neuroscience, 2015, 9, 635.	2.0	28
28	Driver Gaze Behavior Is Different in Normal Curve Driving and when Looking at the Tangent Point. PLoS ONE, 2015, 10, e0135505.	2.5	21
29	Eye Tracking in the Wild: the Good, the Bad and the Ugly. Journal of Eye Movement Research, 2015, 8, .	0.8	19
30	Future path and tangent point models in the visual control of locomotion in curve driving. Journal of Vision, 2014, 14, 21-21.	0.3	71
31	Combined eye-tracking and luminance measurements while driving on a rural road: Towards determining mesopic adaptation luminance. Lighting Research and Technology, 2014, 46, 676-694.	2.7	21
32	Effect of driving experience on anticipatory look-ahead fixations in real curve driving. Accident Analysis and Prevention, 2014, 70, 195-208.	5.7	69
33	Qualitative Quantitative and Experimental Concept Possession, Criteria for Identifying Conceptual Change in Science Education. Science and Education, 2013, 22, 1347-1359.	2.7	5
34	Look-ahead fixations in curve driving. Ergonomics, 2013, 56, 34-44.	2.1	54
35	Beyond the tangent point: Gaze targets in naturalistic driving. Journal of Vision, 2013, 13, 11-11.	0.3	39
36	Pursuit Eye-Movements in Curve Driving Differentiate between Future Path and Tangent Point Models. PLoS ONE, 2013, 8, e68326.	2.5	43

#	Article	IF	CITATIONS
37	Eye-movements in real curve driving: pursuit-like optokinesis in vehicle frame of reference, stability in an allocentric reference coordinate system. Journal of Eye Movement Research, 2013, 6, .	0.8	19
38	Anticipatory eye movements when approaching a curve on a rural road depend on working memory load. Transportation Research Part F: Traffic Psychology and Behaviour, 2012, 15, 369-377.	3.7	44
39	An Information Semantic Account of Scientific Models. , 2012, , 315-327.		1
40	EPSA Philosophy of Science: Amsterdam 2009. , 2012, , .		2
41	Neurocognitive processing of auditorily and visually presented inflected words and pseudowords: Evidence from a morphologically rich language. Brain Research, 2009, 1275, 54-66.	2.2	36
42	Computational Templates, Neural Network Dynamics, and Symbolic Logic. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	1
43	From Fly Detectors to Action Control: Representations in Reinforcement Learning. Philosophy of Science, 0, , .	1.0	0