Elide Formentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6221108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Developmental Cell, 2022, 57, 1177-1192.e6.	7.0	27
2	Innovation, conservation, and repurposing of gene function in root cell type development. Cell, 2021, 184, 3333-3348.e19.	28.9	48
3	Chloroplast Calcium Signaling in the Spotlight. Frontiers in Plant Science, 2020, 11, 186.	3.6	34
4	A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nature Plants, 2019, 5, 581-588.	9.3	56
5	Salt tolerance in indica rice cell cultures depends on a fine tuning of ROS signalling and homeostasis. PLoS ONE, 2019, 14, e0213986.	2.5	27
6	A Meta-Analysis of Comparative Transcriptomic Data Reveals a Set of Key Genes Involved in the Tolerance to Abiotic Stresses in Rice. International Journal of Molecular Sciences, 2019, 20, 5662.	4.1	24
7	H2O2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells. Frontiers in Plant Science, 2018, 9, 1549.	3.6	13
8	Fast Regulation of Hormone Metabolism Contributes to Salt Tolerance in Rice (Oryza sativa spp.) Tj ETQq0 0 () rgBT_/Over	lock 10 Tf 50
9	Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses. Frontiers in Plant Science, 2018, 9, 204.	3.6	65
10	Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms. Bioinformatics, 2017, 33, 453-455.	4.1	20
11	Physiological Characterization of a Plant Mitochondrial Calcium Uniporter in Vitro and in Vivo. Plant Physiology, 2017, 173, 1355-1370.	4.8	54
12	Salt Tolerance in Crops: Not Only a Matter of Gene Regulation. Plant Physiology, 2017, 174, 1287-1288.	4.8	17
13	Targeted Next-Generation Sequencing Identification of Mutations in Disease Resistance Gene Analogs (RGAs) in Wild and Cultivated Beets. Genes, 2017, 8, 264.	2.4	10
14	Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. Frontiers in Plant Science, 2016, 7, 354.	3.6	13
15	Eliciting the Functional Taxonomy from protein annotations and taxa. Scientific Reports, 2016, 6, 31971.	3.3	14
16	Alternative Splicing-Mediated Targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to Mitochondria Affects Organelle Morphology. Plant Physiology, 2015, 167, 216-227.	4.8	69

17	A Thylakoid-Located Two-Pore K ⁺ Channel Controls Photosynthetic Light Utilization in Plants. Science, 2013, 342, 114-118.	12.6	146

18Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane. Biochimica Et
Biophysica Acta - Bioenergetics, 2011, 1807, 359-367.1.064

ELIDE FORMENTIN

#	Article	IF	CITATIONS
19	Characterization of a Plant Glutamate Receptor Activity. Cellular Physiology and Biochemistry, 2010, 26, 253-262.	1.6	36
20	ATP-Sensitive Cation-channel in Wheat (<i>Triticum durum</i> Desf.): Identification and Characterization of a Plant Mitochondrial Channel by Patch-clamp. Cellular Physiology and Biochemistry, 2010, 26, 975-982.	1.6	23
21	Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic Similarities and a Weighting Scheme in Gene Ontology. PLoS ONE, 2009, 4, e4619.	2.5	33
22	KDC2, a functional homomeric potassium channel expressed during carrot embryogenesis. FEBS Letters, 2006, 580, 5009-5015.	2.8	8
23	Histidines Are Responsible for Zinc Potentiation of the Current in KDC1 Carrot Channels. Biophysical Journal, 2004, 86, 224-234.	0.5	20