Prasenjit Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6221091/publications.pdf

Version: 2024-02-01

73 papers

3,756 citations

147726 31 h-index 59 g-index

93 all docs 93
docs citations

93 times ranked 2242 citing authors

#	Article	IF	CITATIONS
1	Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers and Industrial Engineering, 2020, 140, 106231.	3.4	613
2	Integrated QFD-MCDM framework for green supplier selection. Journal of Cleaner Production, 2017, 142, 3728-3740.	4.6	321
3	Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 2011, 32, 851-860.	5.1	284
4	Material selection using preferential ranking methods. Materials & Design, 2012, 35, 384-393.	5.1	193
5	Selection of materials using compromise ranking and outranking methods. Materials & Design, 2009, 30, 4043-4053.	5.1	182
6	Selection of industrial robots using compromise ranking and outranking methods. Robotics and Computer-Integrated Manufacturing, 2010, 26, 483-489.	6.1	145
7	Sustainable supplier selection using combined FUCOM – Rough SAW model. Reports in Mechanical Engineering, 2020, 1, 34-43.	4.9	121
8	Cutting tool material selection using grey complex proportional assessment method. Materials & Design, 2012, 36, 372-378.	5.1	103
9	An integrated BWM-LBWA-CoCoSo framework for evaluation of healthcare sectors in Eastern Europe. Socio-Economic Planning Sciences, 2021, 78, 101052.	2.5	91
10	A multi-criteria decision-making framework for agriculture supply chain risk management under a circular economy context. Management Decision, 2021, 59, 1801-1826.	2.2	81
11	Comparative Evaluation of Sustainable Design Based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) Methods: A Perspective on Household Furnishing Materials. Symmetry, 2019, 11, 74.	1.1	81
12	Development of an integrated decision making model for location selection of logistics centers in the Spanish autonomous communities. Expert Systems With Applications, 2020, 148, 113208.	4.4	75
13	An interval valued neutrosophic decision-making structure for sustainable supplier selection. Expert Systems With Applications, 2021, 183, 115354.	4.4	74
14	Eliminating Rank Reversal Problem Using a New Multi-Attribute Model—The RAFSI Method. Mathematics, 2020, 8, 1015.	1.1	71
15	A rough based multi-criteria evaluation method for healthcare waste disposal location decisions. Computers and Industrial Engineering, 2020, 143, 106394.	3.4	67
16	A novel integrated decision-making approach for the evaluation and selection of renewable energy technologies. Clean Technologies and Environmental Policy, 2018, 20, 403-420.	2.1	66
17	An integrated decision-making model for supplier evaluation in public healthcare system: the case study of a Spanish hospital. Journal of Enterprise Information Management, 2020, 33, 965-989.	4.4	65
18	Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management. Information (Switzerland), 2019, 10, 4.	1.7	64

#	Article	IF	Citations
19	A comparative analysis of VIKOR method and its variants. Decision Science Letters, 2016, , 469-486.	0.5	62
20	A risk-based integrated decision-making model for green supplier selection. Kybernetes, 2019, 49, 1229-1252.	1.2	53
21	Performance evaluation of Indian Railway zones using DEMATEL and VIKOR methods. Benchmarking, 2016, 23, 78-95.	2.9	51
22	A new fuzzy methodology-based structured framework for RAM and risk analysis. Applied Soft Computing Journal, 2019, 74, 242-254.	4.1	50
23	Investigating the Effect of Normalization Norms in Flexible Manufacturing Sytem Se-lection Using Multi - Criteria Decision - Making Methods. Journal of Engineering Science and Technology Review, 2014, 7, 141-150.	0.2	48
24	Selection of materials using multi-criteria decision-making methods with minimum data. Decision Science Letters, 2013, , 135-148.	0.5	44
25	Development of a decision support framework for sustainable freight transport system evaluation using rough numbers. International Journal of Production Research, 2020, 58, 4325-4351.	4.9	44
26	A NOVEL HYBRID METHOD FOR NON-TRADITIONAL MACHINING PROCESS SELECTION USING FACTOR RELATIONSHIP AND MULTI-ATTRIBUTIVE BORDER APPROXIMATION METHOD. Facta Universitatis, Series: Mechanical Engineering, 2017, 15, 439.	2.3	44
27	"A multi-tier sustainable food supplier selection model under uncertainty― Operations Management Research, 2022, 15, 116-145.	5.0	43
28	Flexible manufacturing system selection using preference ranking methods: A comparative study. International Journal of Industrial Engineering Computations, 2014, 5, 315-338.	0.4	39
29	A SWARA-CoCoSo-Based Approach for Spray Painting Robot Selection. Informatica, 2022, , 35-54.	1.5	38
30	Decision making for facility location selection using PROMETHEE II method. International Journal of Industrial and Systems Engineering, 2012, 11, 16.	0.1	37
31	Evaluating performance of engineering departments in an Indian University using DEMATEL and compromise ranking methods. Opsearch, 2015, 52, 307-328.	1.1	36
32	A TWO-PHASE MODEL FOR SUPPLIER EVALUATION IN MANUFACTURING ENVIRONMENT. Operational Research in Engineering Sciences: Theory and Applications, 2019, 2, .	1.4	34
33	An Integrated DEMATEL–VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation. Journal of the Institution of Engineers (India): Series E, 2018, 99, 63-73.	0.5	27
34	Performance evaluation of Indian states in tourism using an integrated PROMETHEE-GAIA approach. Opsearch, 2016, 53, 63-84.	1.1	26
35	Selection of industrial robots using compromise ranking method. International Journal of Industrial and Systems Engineering, 2012, 11, 3.	0.1	24
36	EDM PROCESS PARAMETER OPTIMIZATION FOR EFFICIENT MACHINING OF INCONEL-718. Facta Universitatis, Series: Mechanical Engineering, 2020, 18, 473.	2.3	24

#	Article	IF	Citations
37	Model for selecting a route for the transport of hazardous materials using a fuzzy logic system. Military Technical Courier, 2021, 69, 355-390.	0.3	22
38	A fuzzy group decision-making model to measure resiliency in a food supply chain: A case study in Spain. Socio-Economic Planning Sciences, 2022, 82, 101257.	2.5	20
39	Materials selection using COPRAS and COPRAS-G methods. International Journal of Materials and Structural Integrity, 2012, 6, 111.	0.1	19
40	Material Selection in Manufacturing Environment Using Compromise Ranking and Regret Theory-based Compromise Ranking Methods: A Comparative Study. Universal Journal of Materials Science, 2013, 1, 69-77.	0.3	17
41	A DoE–TOPSIS method-based meta-model for parametric optimization of non-traditional machining processes. Journal of Modelling in Management, 2019, 14, 430-455.	1.1	16
42	A novel fuzzyâ€based structured framework for sustainable operation and environmental friendly production in coalâ€fired power industry. International Journal of Intelligent Systems, 2022, 37, 2706-2738.	3.3	15
43	The Role of Façade Materials in Blast-Resistant Buildings: An Evaluation Based on Fuzzy Delphi and Fuzzy EDAS. Algorithms, 2019, 12, 119.	1.2	14
44	Nontraditional machining processes selection using evaluation of mixed data method. International Journal of Advanced Manufacturing Technology, 2013, 68, 1613-1626.	1.5	13
45	A Comprehensive Solution to Automated Inspection Device Selection Problems using ELECTRE Methods. International Journal of Technology, 2014, 5, 193.	0.4	13
46	An Integrated Methodology for Evaluation of Electric Vehicles Under Sustainable Automotive Environment. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 41-62.	0.3	13
47	Advanced manufacturing systems selection using ORESTE method. International Journal of Advanced Operations Management, 2013, 5, 337.	0.3	11
48	A comparative study of preference dominance-based approaches for selection of industrial robots. Advances in Production Engineering and Management, 2014, 9, 5-20.	0.8	11
49	Development of a meta-model for the determination of technological value of cotton fiber using design of experiments and the TOPSIS method. Journal of Natural Fibers, 2018, 15, 882-895.	1.7	11
50	An Integrated Multi-Attribute Model for Evaluation of Sustainable Mobile Phone. Sustainability, 2019, 11, 3704.	1.6	10
51	Cotton Fabric Selection Using a Grey Fuzzy Relational Analysis Approach. Journal of the Institution of Engineers (India): Series E, 2019, 100, 21-36.	0.5	10
52	Supplier evaluation in manufacturing environment using compromise ranking method with grey interval numbers. International Journal of Industrial Engineering Computations, 2012, 3, 393-402.	0.4	9
53	A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method. Journal of the Institution of Engineers (India): Series E, 2017, 98, 79-90.	0.5	9
54	Prediction of Responses in a Sustainable Dry Turning Operation: A Comparative Analysis. Mathematical Problems in Engineering, 2021, 2021, 1-15.	0.6	9

#	Article	IF	CITATIONS
55	Intelligent Decision MakingÂTools in Manufacturing Technology Selection. Materials Horizons, 2018, , 113-126.	0.3	8
56	Bi-Level Multi-Objective Production Planning Problem with Multi-Choice Parameters: A Fuzzy Goal Programming Algorithm. Algorithms, 2019, 12, 143.	1.2	8
57	A novel decision-making approach for light weight environment friendly material selection. Materials Today: Proceedings, 2020, 22, 1460-1469.	0.9	8
58	Sustainable oil selection for cleaner production in Indian foundry industries: A three phase integrated decision-making framework. Journal of Cleaner Production, 2021, 313, 127827.	4.6	8
59	An Integrated AHP-QFD-Based Compromise Ranking Model for Sustainable Supplier Selection. Advances in Logistics, Operations, and Management Science Book Series, 2019, , 32-54.	0.3	7
60	AN INTEGRATED DECISION-MAKING MODEL FOR EFFICIENCY ANALYSIS OF THE FORKLIFTS IN WAREHOUSING SYSTEMS. Facta Universitatis, Series: Mechanical Engineering, 2021, 19, 537.	2.3	7
61	A multi-level programming model for green supplier selection. Management Decision, 2021, 59, 2496-2527.	2.2	5
62	A Simple Drain Current Model for MOS Transistors with the Lorentz Force Effect. Sensors, 2017, 17, 1199.	2.1	3
63	An efficient stochastic programming approach for solving integrated multi-objective transportation and inventory management problem using goodness of fit. Kybernetes, 2022, 51, 768-803.	1.2	3
64	Suppliers Selection In Manufacturing Environment Using Range Of Value Method. I-manager's Journal on Mechanical Engineering, 2013, 3, 15-22.	0.4	3
65	Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application. Sensors, 2016, 16, 1389.	2.1	2
66	Performance Evaluation of Sustainable Smart Cities in India. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 14-40.	0.3	2
67	A Rough Decision-Making Model for Biomaterial Selection. Materials Horizons, 2019, , 227-256.	0.3	2
68	Low power design for RF circuits. , 2011, , .		1
69	A Hybrid MCDM Approach-Based Framework for Operational Sustainability of Process Industry. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 1-13.	0.3	1
70	A statistical approach for improvement of Best Worst Method (BWM)., 0,,.		1
71	A band selected 3.1–30.1 GHz distributed amplifier in 0.18â€Î⅓m CMOS technology. Microwave and Optical Technology Letters, 2011, 53, 1850-1853.	0.9	O
72	The characteristic analysis of CPW bandpass filter by magnetic material. , 2013, , .		0

ARTICLE

Advancement and up gradation aspects en route for enhancement of rubber plant industry performance by introducing scholastic support through the proposed CDGN Model., 2014, , .