List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6220715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6, 446-465.	11.9	581
2	The Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimization and Pitfalls. Molecular Therapy, 2010, 18, 561-569.	8.2	578
3	Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano, 2013, 7, 3253-3263.	14.6	477
4	Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of Controlled Release, 2013, 172, 229-238.	9.9	457
5	Precisely and accurately localizing single emitters in fluorescence microscopy. Nature Methods, 2014, 11, 253-266.	19.0	430
6	Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. Journal of Controlled Release, 2014, 190, 607-623.	9.9	325
7	Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today, 2014, 9, 344-364.	11.9	276
8	Encoding microcarriers: present and future technologies. Nature Reviews Drug Discovery, 2002, 1, 447-456.	46.4	270
9	Three-Dimensional Fluorescence Recovery after Photobleaching with the Confocal Scanning Laser Microscope. Biophysical Journal, 2003, 85, 2240-2252.	0.5	265
10	Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano, 2012, 6, 5767-5783.	14.6	239
11	Exploiting Intrinsic Nanoparticle Toxicity: The Pros and Cons of Nanoparticle-Induced Autophagy in Biomedical Research. Chemical Reviews, 2014, 114, 7581-7609.	47.7	222
12	Ultrasound and microbubble mediated drug delivery: Acoustic pressure as determinant for uptake via membrane pores or endocytosis. Journal of Controlled Release, 2015, 197, 20-28.	9.9	220
13	Extracellular barriers in respiratory gene therapy. Advanced Drug Delivery Reviews, 2009, 61, 115-127.	13.7	199
14	The proton sponge hypothesis: Fable or fact?. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 184-190.	4.3	199
15	Photothermal nanofibres enable safe engineering of therapeutic cells. Nature Nanotechnology, 2021, 16, 1281-1291.	31.5	192
16	Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chemical Society Reviews, 2013, 42, 8339.	38.1	190
17	Stimuli-responsive electrospun fibers and their applications. Chemical Society Reviews, 2011, 40, 2417.	38.1	184
18	Liposome based systems for systemic siRNA delivery: Stability in blood sets the requirements for optimal carrier design. Journal of Controlled Release, 2012, 158, 362-370.	9.9	175

#	Article	IF	CITATIONS
19	Vitreous: A Barrier to Nonviral Ocular Gene Therapy. , 2005, 46, 3553.		169
20	Polysaccharide-based nucleic acid nanoformulations. Advanced Drug Delivery Reviews, 2013, 65, 1123-1147.	13.7	161
21	Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chemical Society Reviews, 2014, 43, 444-472.	38.1	157
22	Comparison of Gold Nanoparticle Mediated Photoporation: Vapor Nanobubbles Outperform Direct Heating for Delivering Macromolecules in Live Cells. ACS Nano, 2014, 8, 6288-6296.	14.6	157
23	Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles. ACS Nano, 2018, 12, 2332-2345.	14.6	154
24	Encoding microcarriers by spatial selective photobleaching. Nature Materials, 2003, 2, 169-173.	27.5	152
25	Ovarian tissue cryopreservation in female-to-male transgender people: insights into ovarian histology and physiology after prolonged androgen treatment. Reproductive BioMedicine Online, 2017, 34, 557-566.	2.4	148
26	Identification of Individual Exosome-Like Vesicles by Surface Enhanced Raman Spectroscopy. Small, 2016, 12, 3292-3301.	10.0	145
27	Sizing Nanomatter in Biological Fluids by Fluorescence Single Particle Tracking. Nano Letters, 2010, 10, 4435-4442.	9.1	144
28	Stimuli-responsive nanobubbles for biomedical applications. Chemical Society Reviews, 2021, 50, 5746-5776.	38.1	141
29	On the cellular processing of non-viral nanomedicines for nucleic acid delivery: Mechanisms and methods. Journal of Controlled Release, 2012, 161, 566-581.	9.9	125
30	Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Quarterly Reviews of Biophysics, 2015, 48, 323-387.	5.7	125
31	Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. Journal of Controlled Release, 2015, 202, 83-92.	9.9	125
32	The Transport of Nanosized Gene Carriers Unraveled by Live-Cell Imaging. Angewandte Chemie - International Edition, 2006, 45, 1568-1572.	13.8	123
33	A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. Journal of Controlled Release, 2008, 126, 67-76.	9.9	119
34	Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nature Communications, 2018, 9, 4518.	12.8	113
35	The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials, 2009, 30, 6803-6813.	11.4	106
36	Lightâ€Addressable Capsules as Caged Compound Matrix for Controlled Triggering of Cytosolic Reactions. Angewandte Chemie - International Edition, 2013, 52, 695-699.	13.8	104

#	Article	IF	CITATIONS
37	Proteinâ€Release Behavior of Selfâ€Assembled PEG– <i>β</i> â€Cyclodextrin/PEG–Cholesterol Hydrogels. Advanced Functional Materials, 2009, 19, 2992-3001.	14.9	101
38	Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine, 2013, 8, 935-949.	3.3	100
39	Fungicidal activity of miconazole against Candida spp. biofilms. Journal of Antimicrobial Chemotherapy, 2010, 65, 694-700.	3.0	93
40	Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Advanced Drug Delivery Reviews, 2018, 136-137, 28-48.	13.7	91
41	Nucleic acid delivery: Where material sciences and bio-sciences meet. Materials Science and Engineering Reports, 2007, 58, 117-161.	31.8	88
42	A Beneficiary Role for Neuraminidase in Influenza Virus Penetration through the Respiratory Mucus. PLoS ONE, 2014, 9, e110026.	2.5	88
43	Gasâ€Shearing Fabrication of Multicompartmental Microspheres: A Oneâ€Step and Oilâ€Free Approach. Advanced Science, 2019, 6, 1802342.	11.2	87
44	In search for crossâ€reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 312-323.	1.5	85
45	Materials and Technologies to Combat Counterfeiting of Pharmaceuticals: Current and Future Problem Tackling. Advanced Materials, 2020, 32, e1905486.	21.0	84
46	Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disulfide-based poly(amido amine)/DNA polyplexes. Biomaterials, 2011, 32, 3072-3084.	11.4	83
47	The cytotoxic effects of polymer-coated quantum dots and restrictions for live cell applications. Biomaterials, 2012, 33, 4882-4888.	11.4	83
48	Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled Release, 2014, 195, 21-28.	9.9	83
49	Dynamic Colocalization Microscopy To Characterize Intracellular Trafficking of Nanomedicines. ACS Nano, 2011, 5, 7874-7884.	14.6	82
50	Transport of Nanoparticles and Tobramycin-loaded Liposomes in Burkholderia cepacia Complex Biofilms. PLoS ONE, 2013, 8, e79220.	2.5	79
51	Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system. Journal of Controlled Release, 2015, 206, 177-186.	9.9	78
52	Line FRAP with the Confocal Laser Scanning Microscope for Diffusion Measurements in Small Regions of 3-D Samples. Biophysical Journal, 2007, 92, 2172-2183.	0.5	77
53	Cytotoxicity of Cadmium-Free Quantum Dots and Their Use in Cell Bioimaging. Chemical Research in Toxicology, 2014, 27, 1050-1059.	3.3	77
54	Towards Theranostic Multicompartment Microcapsules: in-situ Diagnostics and Laser-induced Treatment. Theranostics, 2013, 3, 141-151.	10.0	74

#	Article	IF	CITATIONS
55	Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope. Optics Express, 2010, 18, 22886.	3.4	73
56	InÂvivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. Biomaterials, 2013, 34, 2350-2358.	11.4	72
57	Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching. Journal of Controlled Release, 2005, 110, 67-78.	9.9	70
58	Bright and Stable CdSe/CdS@SiO ₂ Nanoparticles Suitable for Long-Term Cell Labeling. ACS Applied Materials & Interfaces, 2014, 6, 11714-11723.	8.0	67
59	Mechanistic profiling of the siRNA delivery dynamics of lipid–polymer hybrid nanoparticles. Journal of Controlled Release, 2015, 201, 22-31.	9.9	66
60	Endocytosis and Endosomal Trafficking of DNA After Gene Electrotransfer In Vitro. Molecular Therapy - Nucleic Acids, 2016, 5, e286.	5.1	66
61	Functional Platform for Controlled Subcellular Distribution of Carbon Nanotubes. ACS Nano, 2011, 5, 9264-9270.	14.6	63
62	A New FRAP/FRAPa Method for Three-Dimensional Diffusion Measurements Based on Multiphoton Excitation Microscopy. Biophysical Journal, 2008, 95, 3457-3469.	0.5	62
63	Hemocompatibility of siRNA loaded dextran nanogels. Biomaterials, 2011, 32, 9120-9127.	11.4	62
64	The Cellular Interactions of PEGylated Gold Nanoparticles: Effect of PEGylation on Cellular Uptake and Cytotoxicity. Particle and Particle Systems Characterization, 2014, 31, 794-800.	2.3	62
65	Improved Label-Free Identification of Individual Exosome-like Vesicles with Au@Ag Nanoparticles as SERS Substrate. ACS Applied Materials & amp; Interfaces, 2019, 11, 39424-39435.	8.0	62
66	Detection and Characterization of Subvisible Aggregates of Monoclonal IgG in Serum. Pharmaceutical Research, 2012, 29, 2202-2212.	3.5	61
67	The influence of movement on the localization precision of subâ€resolution particles in fluorescence microscopy. Journal of Biophotonics, 2012, 5, 97-109.	2.3	61
68	Membrane vesicle secretion and prophage induction in multidrugâ€resistant <i>Stenotrophomonas maltophilia</i> in response to ciprofloxacin stress. Environmental Microbiology, 2017, 19, 3930-3937.	3.8	60
69	Unbreakable Codes in Electrospun Fibers: Digitally Encoded Polymers to Stop Medicine Counterfeiting. Advanced Materials, 2010, 22, 2657-2662.	21.0	58
70	Colloidal stability of nano-sized particles in the peritoneal fluid: Towards optimizing drug delivery systems for intraperitoneal therapy. Acta Biomaterialia, 2014, 10, 2965-2975.	8.3	58
71	The effect of nanoparticle degradation on poly(methacrylic acid)-coated quantum dot toxicity: The importance of particle functionality assessment in toxicology. Acta Biomaterialia, 2014, 10, 732-741.	8.3	57
72	Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. Journal of Controlled Release, 2017, 267, 154-162.	9.9	57

#	Article	IF	CITATIONS
73	Characterization of diffusion of macromolecules in konjac glucomannan solutions and gels by fluorescence recovery after photobleaching technique. International Journal of Pharmaceutics, 2006, 316, 37-46.	5.2	55
74	Photopolymerized Thermosensitive Poly(HPMAlactate)-PEG-Based Hydrogels: Effect of Network Design on Mechanical Properties, Degradation, and Release Behavior. Biomacromolecules, 2010, 11, 2143-2151.	5.4	55
75	High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 2016, 28, 948.	0.4	54
76	On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids. Nanoscale, 2014, 6, 1741-1747.	5.6	53
77	Triggered Release from Cellulose Microparticles Inspired by Wood Degradation by Fungi. ACS Sustainable Chemistry and Engineering, 2021, 9, 387-397.	6.7	53
78	Biomimetic Magnetic Silk Scaffolds. ACS Applied Materials & amp; Interfaces, 2015, 7, 6282-6292.	8.0	52
79	Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light: Science and Applications, 2018, 7, 47.	16.6	50
80	Cytosolic Delivery of Nanolabels Prevents Their Asymmetric Inheritance and Enables Extended Quantitative in Vivo Cell Imaging. Nano Letters, 2016, 16, 5975-5986.	9.1	49
81	Fluorescence Single Particle Tracking for the Characterization of Submicron Protein Aggregates in Biological Fluids and Complex Formulations. Pharmaceutical Research, 2011, 28, 1112-1120.	3.5	48
82	Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Advanced Drug Delivery Reviews, 2012, 64, 78-94.	13.7	48
83	Immobilization of Pseudorabies Virus in Porcine Tracheal Respiratory Mucus Revealed by Single Particle Tracking. PLoS ONE, 2012, 7, e51054.	2.5	48
84	Laser-assisted photoporation: fundamentals, technological advances and applications. Advances in Physics: X, 2016, 1, 596-620.	4.1	47
85	Stable Longâ€Term Intracellular Labelling with Fluorescently Tagged Cationic Magnetoliposomes. ChemBioChem, 2009, 10, 257-267.	2.6	46
86	Investigating the Toxic Effects of Iron Oxide Nanoparticles. Methods in Enzymology, 2012, 509, 195-224.	1.0	46
87	Vapor nanobubble is the more reliable photothermal mechanism for inducing endosomal escape of siRNA without disturbing cell homeostasis. Journal of Controlled Release, 2020, 319, 262-275.	9.9	45
88	Advanced fluorescence microscopy methods illuminate the transfection pathway of nucleic acid nanoparticles. Journal of Controlled Release, 2010, 148, 69-74.	9.9	42
89	Coating of Quantum Dots strongly defines their effect on lysosomal health and autophagy. Acta Biomaterialia, 2017, 48, 195-205.	8.3	42
90	Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. Nano-Micro Letters, 2020, 12, 185.	27.0	42

#	Article	IF	CITATIONS
91	Dioctadecyldimethylammonium:Monoolein Nanocarriers for Efficient <i>in Vitro</i> Gene Silencing. ACS Applied Materials & Interfaces, 2014, 6, 6977-6989.	8.0	41
92	Faithful Fabrication of Biocompatible Multicompartmental Memomicrospheres for Digitally Colorâ€Tunable Barcoding. Small, 2020, 16, e1907586.	10.0	41
93	Fluorescent non-porous silica nanoparticles for long-term cell monitoring: Cytotoxicity and particle functionality. Acta Biomaterialia, 2013, 9, 9183-9193.	8.3	40
94	Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy: An additional barrier to non viral gene delivery. Journal of Controlled Release, 2014, 195, 29-36.	9.9	40
95	Fast spatial-selective delivery into live cells. Journal of Controlled Release, 2017, 266, 198-204.	9.9	40
96	FRAP in Pharmaceutical Research: Practical Guidelines and Applications in Drug Delivery. Pharmaceutical Research, 2014, 31, 255-270.	3.5	39
97	Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175.	9.9	38
98	Loss of Nuclear Envelope Integrity in Aging and Disease. International Review of Cell and Molecular Biology, 2018, 336, 205-222.	3.2	38
99	Concentration Gradients in Material Sciences: Methods to Design and Biomedical Applications. Advanced Functional Materials, 2021, 31, 2009005.	14.9	38
100	Freeze-dried mucoadhesive polymeric system containing pegylated lipoplexes: Towards a vaginal sustained released system for siRNA. Journal of Controlled Release, 2016, 236, 68-78.	9.9	37
101	Methodologies to investigate intracellular barriers for nucleic acid delivery in non-viral gene therapy. Nano Today, 2018, 21, 74-90.	11.9	37
102	Laser-induced nanobubbles safely ablate vitreous opacities in vivo. Nature Nanotechnology, 2022, 17, 552-559.	31.5	37
103	The influence of natural pulmonary surfactant on the efficacy of siRNA-loaded dextran nanogels. Nanomedicine, 2013, 8, 1625-1638.	3.3	36
104	Photoablation of Human Vitreous Opacities by Light-Induced Vapor Nanobubbles. ACS Nano, 2019, 13, 8401-8416.	14.6	36
105	Intra- and Interspecies Effects of Outer Membrane Vesicles from Stenotrophomonas maltophilia on β-Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2016, 60, 2516-2518.	3.2	35
106	Layer by Layer Assembled Chitosan-Coated Gold Nanoparticles for Enhanced siRNA Delivery and Silencing. International Journal of Molecular Sciences, 2021, 22, 831.	4.1	35
107	Turning a frown upside down: Exploiting nanoparticle toxicity for anticancer therapy. Nano Today, 2013, 8, 121-125.	11.9	34
108	Multilayered Magnetic Gelatin Membrane Scaffolds. ACS Applied Materials & Interfaces, 2015, 7, 23098-23109.	8.0	34

#	Article	IF	CITATIONS
109	Single-particle tracking for studying nanomaterial dynamics: applications and fundamentals in drug delivery. Nanomedicine, 2014, 9, 913-927.	3.3	33
110	Mechanistic profiling of the release kinetics of siRNA from lipidoid-polymer hybrid nanoparticles in vitro and in vivo after pulmonary administration. Journal of Controlled Release, 2019, 310, 82-93.	9.9	33
111	Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnology Advances, 2021, 49, 107760.	11.7	33
112	Influence of temperature, oxygen and bacterial strain identity on the association of Campylobacter jejuni with Acanthamoeba castellanii. FEMS Microbiology Ecology, 2010, 74, 371-381.	2.7	32
113	Transport Mechanisms of Squalenoyl-Adenosine Nanoparticles Across the Blood–Brain Barrier. Chemistry of Materials, 2015, 27, 3636-3647.	6.7	32
114	Spatiotemporal Visualization of Subcellular Dynamics of Carbon Nanotubes. Nano Letters, 2012, 12, 6145-6151.	9.1	31
115	Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. International Journal of Pharmaceutics, 2016, 511, 1112-1123.	5.2	31
116	Effect of hyaluronic acid-binding to lipoplexes on intravitreal drug delivery for retinal gene therapy. European Journal of Pharmaceutical Sciences, 2017, 103, 27-35.	4.0	31
117	Photoporation with Biodegradable Polydopamine Nanosensitizers Enables Safe and Efficient Delivery of mRNA in Human T Cells. Advanced Functional Materials, 2021, 31, 2102472.	14.9	31
118	Gas-shearing synthesis of core–shell multicompartmental microparticles as cell-like system for enzymatic cascade reaction. Chemical Engineering Journal, 2022, 428, 132607.	12.7	31
119	Targeted nanoparticles towards increased L cell stimulation as a strategy to improve oral peptide delivery in incretin-based diabetes treatment. Biomaterials, 2020, 255, 120209.	11.4	30
120	Protein macromonomers containing reduction-sensitive linkers for covalent immobilization and glutathione triggered release from dextran hydrogels. Journal of Controlled Release, 2011, 156, 329-336.	9.9	29
121	Disregarded Effect of Biological Fluids in siRNA Delivery: Human Ascites Fluid Severely Restricts Cellular Uptake of Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 24322-24329.	8.0	29
122	Targeted Perturbation of Nuclear Envelope Integrity with Vapor Nanobubble-Mediated Photoporation. ACS Nano, 2018, 12, 7791-7802.	14.6	29
123	Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells. Acta Biomaterialia, 2015, 25, 216-229.	8.3	28
124	Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. Crystals, 2019, 9, 411.	2.2	28
125	Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus. Biomaterials, 2017, 138, 1-12.	11.4	27
126	Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials, 2019, 217, 119250.	11.4	27

#	Article	IF	CITATIONS
127	Nanomaterials to avoid and destroy protein aggregates. Nano Today, 2020, 31, 100837.	11.9	27
128	Exploring Light-Sensitive Nanocarriers for Simultaneous Triggered Antibiotic Release and Disruption of Biofilms Upon Generation of Laser-Induced Vapor Nanobubbles. Pharmaceutics, 2019, 11, 201.	4.5	26
129	Fluorescenceâ€Based Quantification of Messenger RNA and Plasmid DNA Decay Kinetics in Extracellular Biological Fluids and Cell Extracts. Advanced Biology, 2020, 4, e2000057.	3.0	26
130	Characterization of the Mode of Incorporation of Lipophilic Compounds in Solid Dispersions at the Nanoscale Using Fluorescence Resonance Energy Transfer (FRET). Macromolecular Rapid Communications, 2006, 27, 1149-1155.	3.9	25
131	Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation—a case study for fluorescein. Journal of Biomedical Optics, 2006, 11, 044013.	2.6	23
132	Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability. Nature Communications, 2016, 7, 12982.	12.8	23
133	Microfabricated devices for single objective single plane illumination microscopy (SoSPIM). Optics Express, 2017, 25, 1732.	3.4	23
134	Selective Labeling of Individual Neurons in Dense Cultured Networks With Nanoparticle-Enhanced Photoporation. Frontiers in Cellular Neuroscience, 2018, 12, 80.	3.7	23
135	Delivery of Mixed-Lineage Kinase Domain-Like Protein by Vapor Nanobubble Photoporation Induces Necroptotic-Like Cell Death in Tumor Cells. International Journal of Molecular Sciences, 2019, 20, 4254.	4.1	23
136	Vapor nanobubble-mediated photoporation constitutes a versatile intracellular delivery technology. Current Opinion in Colloid and Interface Science, 2021, 54, 101453.	7.4	23
137	MRI assessment of blood outgrowth endothelial cell homing using cationic magnetoliposomes. Biomaterials, 2011, 32, 4140-4150.	11.4	22
138	The performance of gradient alloy quantum dots in cell labeling. Biomaterials, 2014, 35, 7249-7258.	11.4	22
139	Targeted Decationized Polyplexes for siRNA Delivery. Molecular Pharmaceutics, 2015, 12, 150-161.	4.6	22
140	PEGylated and Functionalized Aliphatic Polycarbonate Polyplex Nanoparticles for Intravenous Administration of HDAC5 siRNA in Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 2181-2195.	8.0	21
141	Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. Small, 2020, 16, e2000146.	10.0	21
142	Bubble Forming Films for Spatial Selective Cell Killing. Advanced Materials, 2021, 33, e2008379.	21.0	20
143	Electrospun polystyrene fibers for HIV entrapment. Polymers for Advanced Technologies, 2014, 25, 827-834.	3.2	19
144	The Effect of Intracellular Degradation on Cytotoxicity and Cell Labeling Efficacy of Inorganic Ligand-Stabilized Colloidal CdSe/CdS Quantum Dots. Journal of Biomedical Nanotechnology, 2015, 11, 631-643.	1.1	19

#	Article	IF	CITATIONS
145	Increasing Angiogenesis Factors in Hypoxic Diabetic Wound Conditions by siRNA Delivery: Additive Effect of LbL-Gold Nanocarriers and Desloratadine-Induced Lysosomal Escape. International Journal of Molecular Sciences, 2021, 22, 9216.	4.1	19
146	Photothermally Triggered Endosomal Escape and Its Influence on Transfection Efficiency of Gold-Functionalized JetPEI/pDNA Nanoparticles. International Journal of Molecular Sciences, 2018, 19, 2400.	4.1	18
147	Effect of Covalent Fluorescence Labeling of Plasmid DNA on Its Intracellular Processing and Transfection with Lipid-Based Carriers. Molecular Pharmaceutics, 2014, 11, 1359-1368.	4.6	17
148	Highâ€resolution synchrotron <scp>X</scp> â€ray analysis of bioglassâ€enriched hydrogels. Journal of Biomedical Materials Research - Part A, 2016, 104, 1194-1201.	4.0	17
149	Methods to follow intracellular trafficking of cell-penetrating peptides. Journal of Drug Targeting, 2016, 24, 508-519.	4.4	17
150	Intra-Articular Formulation of GE11-PLGA Conjugate-Based NPs for Dexamethasone Selective Targeting—In Vitro Evaluation. International Journal of Molecular Sciences, 2018, 19, 2304.	4.1	17
151	Surface Functionalization with Polyethylene Glycol and Polyethyleneimine Improves the Performance of Graphene-Based Materials for Safe and Efficient Intracellular Delivery by Laser-Induced Photoporation. International Journal of Molecular Sciences, 2020, 21, 1540.	4.1	17
152	Cas9 RNP transfection by vapor nanobubble photoporation for exÂvivo cell engineering. Molecular Therapy - Nucleic Acids, 2021, 25, 696-707.	5.1	17
153	Multifunctional Layer-by-Layer Coating of Digitally Encoded Microparticles. Langmuir, 2007, 23, 10272-10279.	3.5	16
154	Cell uptake, cytoplasmic diffusion and nuclear access of a 6.5nm diameter dendrimer. International Journal of Pharmaceutics, 2007, 331, 215-219.	5.2	16
155	Elucidating the pre- and post-nuclear intracellular processing of 1,4-dihydropyridine based gene delivery carriers. Journal of Controlled Release, 2012, 162, 167-175.	9.9	16
156	Biocompatible Lipidâ€Coated Persistent Luminescent Nanoparticles for In Vivo Imaging of Dendritic Cell Migration. Particle and Particle Systems Characterization, 2019, 36, 1900371.	2.3	16
157	Efficient Endocytosis of Inorganic Nanoparticles with Zwitterionic Surface Functionalization. ACS Applied Materials & Interfaces, 2019, 11, 38475-38482.	8.0	16
158	Nanoparticle-sensitized photoporation enables inflammasome activation studies in targeted single cells. Nanoscale, 2021, 13, 6592-6604.	5.6	16
159	Evaluation of Encoded Layerâ€Byâ€Layer Coated Microparticles As Protease Sensors. Advanced Functional Materials, 2008, 18, 1624-1631.	14.9	15
160	Equine oviduct explant culture: a basic model to decipher embryo–maternal communication. Reproduction, Fertility and Development, 2014, 26, 954.	0.4	15
161	Nucleic acid loading and fluorescent labeling of isolated extracellular vesicles requires adequate purification. International Journal of Pharmaceutics, 2018, 548, 783-792.	5.2	15
162	Post-PEGylated and crosslinked polymeric ssRNA nanocomplexes as adjuvants targeting lymph nodes with increased cytolytic T cell inducing properties. Journal of Controlled Release, 2018, 284, 73-83.	9.9	15

#	Article	IF	CITATIONS
163	Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. Nanoscale, 2021, 13, 15445-15463.	5.6	15
164	Correlation of Dual Colour Single Particle Trajectories for Improved Detection and Analysis of Interactions in Living Cells. International Journal of Molecular Sciences, 2013, 14, 16485-16514.	4.1	14
165	Long-term live-cell microscopy with labeled nanobodies delivered by laser-induced photoporation. Nano Research, 2020, 13, 485-495.	10.4	14
166	Carbon quantum dots as a dual platform for the inhibition and light-based destruction of collagen fibers: implications for the treatment of eye floaters. Nanoscale Horizons, 2021, 6, 449-461.	8.0	14
167	Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging. New Biotechnology, 2020, 59, 33-43.	4.4	13
168	Enhanced siRNA Delivery and Selective Apoptosis Induction in H1299 Cancer Cells by Layer-by-Layer-Assembled Se Nanocomplexes: Toward More Efficient Cancer Therapy. Frontiers in Molecular Biosciences, 2021, 8, 639184.	3.5	13
169	Hydrogelâ€Induced Cell Membrane Disruptions Enable Direct Cytosolic Delivery of Membraneâ€Impermeable Cargo. Advanced Materials, 2021, 33, e2008054.	21.0	13
170	Together is Better: mRNA Coâ€Encapsulation in Lipoplexes is Required to Obtain Ratiometric Coâ€Đelivery and Protein Expression on the Single Cell Level. Advanced Science, 2022, 9, e2102072.	11.2	13
171	Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles. Contrast Media and Molecular Imaging, 2012, 7, 140-152.	0.8	12
172	Bypassing Border Control: Nuclear Envelope Rupture in Disease. Physiology, 2018, 33, 39-49.	3.1	12
173	Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis. Cellular and Molecular Life Sciences, 2022, 79, 19.	5.4	12
174	Effect of Native Gastric Mucus on in vivo Hybridization Therapies Directed at Helicobacter pylori. Molecular Therapy - Nucleic Acids, 2015, 4, e269.	5.1	11
175	Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials, 2022, 286, 121510.	11.4	11
176	ICG-mediated photodisruption of the inner limiting membrane enhances retinal drug delivery. Journal of Controlled Release, 2022, 349, 315-326.	9.9	11
177	Exploring the HYDRAtion method for loading siRNA on liposomes: the interplay between stability and biological activity in human undiluted ascites fluid. Drug Delivery and Translational Research, 2017, 7, 241-251.	5.8	10
178	The cellular response to plasma membrane disruption for nanomaterial delivery. Nano Convergence, 2022, 9, 6.	12.1	10
179	Light triggered nanoscale biolistics for efficient intracellular delivery of functional macromolecules in mammalian cells. Nature Communications, 2022, 13, 1996.	12.8	10
180	Lipoplexes to Deliver Oligonucleotides in Gram-Positive and Gram-Negative Bacteria: Towards Treatment of Blood Infections. Pharmaceutics, 2021, 13, 989.	4.5	9

#	Article	IF	CITATIONS
181	Made to move. Nature Materials, 2010, 9, 697-698.	27.5	8
182	Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opinion on Drug Delivery, 2021, 18, 229-247.	5.0	8
183	The role of small proteins in Burkholderia cenocepacia J2315 biofilm formation, persistence and intracellular growth. Biofilm, 2019, 1, 100001.	3.8	7
184	Does the mode of dispersion determine the properties of dispersed Pseudomonas aeruginosa biofilm cells?. International Journal of Antimicrobial Agents, 2020, 56, 106194.	2.5	7
185	PEGylation of recombinant human deoxyribonuclease I decreases its transport across lung epithelial cells and uptake by macrophages. International Journal of Pharmaceutics, 2021, 593, 120107.	5.2	7
186	Approximate Bayesian computation for estimating number concentrations of monodisperse nanoparticles in suspension by optical microscopy. Physical Review E, 2016, 93, 063311.	2.1	6
187	Cytosolic delivery of gadolinium <i>via</i> photoporation enables improved <i>in vivo</i> magnetic resonance imaging of cancer cells. Biomaterials Science, 2021, 9, 4005-4018.	5.4	6
188	DNA counterstaining for methylation and hydroxymethylation immunostaining in bovine zygotes. Analytical Biochemistry, 2014, 454, 14-16.	2.4	5
189	Black phosphorus mediated photoporation: a broad absorption nanoplatform for intracellular delivery of macromolecules. Nanoscale, 2021, 13, 17049-17056.	5.6	5
190	Brn-3a suppresses pseudorabies virus-induced cell death in sensory neurons. Journal of General Virology, 2007, 88, 743-747.	2.9	4
191	Quantifying the Average Number of Nucleic Acid Therapeutics per Nanocarrier by Single Particle Tracking Microscopy. Molecular Pharmaceutics, 2018, 15, 1142-1149.	4.6	3
192	In Vitro Evaluation of Antiâ€Aggregation and Degradation Behavior of PEGylated Polymeric Nanogels under In Vivo Like Conditions. Macromolecular Bioscience, 2018, 18, 1700127.	4.1	3
193	Bubbleâ€Forming Films: Bubble Forming Films for Spatial Selective Cell Killing (Adv. Mater. 27/2021). Advanced Materials, 2021, 33, 2170211.	21.0	3
194	Transient nuclear lamin A/C accretion aids in recovery from vapor nanobubble-induced permeabilisation of the plasma membrane. Cellular and Molecular Life Sciences, 2022, 79, 23.	5.4	3
195	Delivery of Oligonucleotides into Bacteria by Fusogenic Liposomes. Methods in Molecular Biology, 2021, 2246, 87-96.	0.9	2
196	Unbreakable codes in electrospun fibers to stop medicine counterfeiting. Journal of Controlled Release, 2010, 148, e13-e15.	9.9	1
197	Detection of ovalbumin amyloid-like fibrils at the oil-water interface in oil-in-water emulsions by spinning disk confocal microscopy. Food Structure, 2021, 29, 100207.	4.5	1
198	Yeast-produced fructosamine-3-kinase retains mobility after ex vivo intravitreal injection in human and bovine eyes as determined by Fluorescence Correlation Spectroscopy. International Journal of Pharmaceutics, 2022, 621, 121772.	5.2	1

#	Article	IF	CITATIONS
199	Automatic particle detection in microscopy using temporal correlations. Microscopy Research and Technique, 2013, 76, 997-1006.	2.2	0
200	The M2 Muscarinic Receptor Signaling Complex Resolved by Single Molecule Tracking in Live Cells. Biophysical Journal, 2017, 112, 87a-88a.	0.5	0
201	Spotlight: Stefaan De Smedt. Pharmaceutical Nanotechnology, 2013, 1, 164-164.	1.5	0
202	Improving antibiotics' penetration and efficiency for treating biofilm infections by laser-induced vapor nanobubbles. , 2020, , .		0