T Selvaraju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6220640/publications.pdf

Version: 2024-02-01

567281 610901 27 605 15 24 h-index citations g-index papers 28 28 28 808 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of \hat{l}^2 -MnO ₂ on Controlled Polymorphism of VO ₂ (<i>x</i>) (<i>x</i>) Tj ETQq Nanosheets for Overall Water Splitting. Journal of Physical Chemistry C, 2022, 126, 3419-3431.	1 1 0.7843 3.1	814 rgBT O 8
2	Layered Porous Graphitic Carbon Nitride Stabilized Effective Co ₂ SnO ₄ Inverse Spinel as a Bifunctional Electrocatalyst for Overall Water Splitting. Langmuir, 2022, 38, 7833-7845.	3.5	28
3	One pot in situ synthesis of nano Au–Pd core-shells embedded on reduced graphene oxide for the oxygen reduction reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114924.	3.5	8
4	Hexacyanoferrate-Complex-Derived NiFe ₂ O ₄ /CoFe ₂ O ₄ Heterostructure–MWCNTs for an Efficient Oxygen Evolution Reaction. Energy & Description and Description an	5.1	36
5	In situ integrated 2D reduced graphene oxide nanosheets with MoSSe for hydrogen evolution reaction and supercapacitor application. Applied Surface Science Advances, 2021, 3, 100054.	6.8	31
6	Anchoring \hat{l}^3 -MnO ₂ within \hat{l}^2 -NiCo(OH) ₂ as an Interfacial Electrode Material for Boosting Power Density in an Asymmetric Supercapacitor Device and for Oxygen Evolution Catalysis. Langmuir, 2021, 37, 5964-5978.	3.5	16
7	Hierarchical 2D/2D interface of nickel aluminum oxide and nickel aluminum layered double hydroxide nanoflowers: An efficient and robust electrocatalyt for overall water splitting. Electrochimica Acta, 2021, 392, 139029.	5.2	14
8	Impact of morphological variation by phase-oriented MnO2-based hierarchical ternary composites for the fabrication of solid-state symmetric supercapacitor. Ionics, 2020, 26, 2563-2579.	2.4	12
9	Exploring the synergistic effect of Ni _x Sn _{2x} S _{4x} thiospinel with MWCNTs for enhanced performance in dye-sensitized solar cells, the hydrogen evolution reaction, and supercapacitors. Dalton Transactions, 2020, 49, 5336-5351.	3.3	27
10	Exploring the corrosion inhibition of magnesium by coatings. Progress in Organic Coatings, 2019, 129, 32-42.	3.9	28
11	Comparative studies on the electrocatalytic hydrogen evolution property of Cu 2 SnS 3 and Cu 4 SnS 4 ternary alloys prepared by solvothermal method. International Journal of Hydrogen Energy, 2018, 43, 3967-3975.	7.1	29
12	Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	43
13	Electroreduction of Nitroaromatic Compounds at Electrochemically Reduced Graphene Oxide Supported Bimetallic Ag@Pd Nanorods Modified Electrodes. Electroanalysis, 2016, 28, 1984-1991.	2.9	6
14	Simple and Robust Green Synthesis of Au NPs on Reduced Graphene Oxide for the Simultaneous Detection of Toxic Heavy Metal lons and Bioremediation Using Bacterium as the Scavenger. Electroanalysis, 2016, 28, 1885-1893.	2.9	26
15	Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine. Journal of Chemical Sciences, 2016, 128, 357-363.	1.5	16
16	Synergistic effect of bimetallic Ag@Cu nanorods modified electrode for enhanced electrochemical sensing of thiocyanate ions. Research on Chemical Intermediates, 2016, 42, 2539-2551.	2.7	8
17	Tuning the direct growth of Ag _{seeds} into bimetallic Ag@Cu nanorods on surface functionalized electrochemically reduced graphene oxide: enhanced nitrite detection. RSC Advances, 2015, 5, 48236-48245.	3.6	16
18	Hierarchical electroless Pt deposition at Au decorated reduced graphene oxide via a galvanic exchanged process: an electrocatalytic nanocomposite with enhanced mass activity for methanol and ethanol oxidation. Journal of Materials Chemistry A, 2015, 3, 18010-18018.	10.3	41

T SELVARAJU

#	Article	IF	CITATION
19	Signal amplification of dopamine using lanthanum hexacyanoferrate-modified electrode. Journal of Chemical Sciences, 2014, 126, 11-16.	1.5	6
20	Green synthesis of self assembled silver nanowire decorated reduced graphene oxide for efficient nitroarene reduction. RSC Advances, 2014, 4, 24518-24525.	3.6	44
21	Unzipped catalytic activity of copper in realizing bimetallic Ag@Cu nanowires as a better amperometric H2O2 sensor. Electrochimica Acta, 2013, 112, 648-654.	5.2	54
22	Electrocatalytic reduction of hydrogen peroxide at nanostructured copper modified electrode. Journal of Applied Electrochemistry, 2009, 39, 321-327.	2.9	29
23	Electrochemical and in situ spectroelectrochemical studies of gold nanoparticles immobilized Nafion matrix modified electrode. Bulletin of Materials Science, 2008, 31, 487-494.	1.7	6
24	Nanostructured copper particles-incorporated Nafion-modified electrode for oxygen reduction. Pramana - Journal of Physics, 2005, 65, 713-722.	1.8	15
25	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 759-762.	2.9	54
26	aâ€MnO2 sensitized SrCO3â€Sr(OH)2 supported on two dimensional carbon composites as stable electrode material for asymmetric supercapacitorÂand for oxygen evolution catalysis. ChemElectroChem, 0, , .	3.4	1
27	Revealing the Role of BrÃnsted Basicity by the Electrocatalytic Reaction via Li Insertion in the MgFe ₂ O ₄ Lattice. Journal of Physical Chemistry C, 0, , .	3.1	1