Ken Kashiwagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6220427/publications.pdf

Version: 2024-02-01

933447 642732 48 532 10 23 citations g-index h-index papers 48 48 48 832 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Evaluation of Fiber Noise Induced in Ultrastable Environments. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2246-2252.	4.7	9
2	Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region. Optics Communications, 2019, 438, 13-17.	2.1	2
3	Multi-branch fiber comb with relative frequency uncertainty at 10 ^{â^20} using fiber noise difference cancellation. Optics Express, 2018, 26, 8831.	3.4	19
4	Improvement of Frequency Comb and Its Applications. The Review of Laser Engineering, 2018, 46, 362.	0.0	0
5	Differential processing for frequency chirp measurement using optical pulse synthesizer. Optics Communications, 2017, 387, 135-140.	2.1	O
6	Offset-free all-fiber frequency comb with an acousto-optic modulator and two <i>f</i> –2 <i>f</i> interferometers. Applied Physics Express, 2017, 10, 072501.	2.4	9
7	Fixed point variations of a frequency comb generated by a passively mode-locked fiber laser. IEICE Electronics Express, 2017, 14, 20170710-20170710.	0.8	1
8	12.5-GHz-spaced laser frequency comb covering over 100 THz and frequency shift of all individual lines for calibration of infrared Doppler instrument. , 2016, , .		0
9	Direct generation of 125-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration. Optics Express, 2016, 24, 8120.	3.4	26
10	High-resolution spectroscopy using a frequency-variable comb light source. , 2016, , .		0
11	Polarization insensitive saw-tooth based wavelength converter in cross-phase modulation scheme. , $2015, \ldots$		O
12	Temporal Imaging of Optical Asymmetric Waveform Pulses With a Time Lens. IEEE Photonics Journal, 2015, 7, 1-11.	2.0	1
13	Synchronous scanning of reference mirror and objective lens for high-resolution full-field interferometry. Japanese Journal of Applied Physics, 2015, 54, 032501.	1.5	O
14	Infrared Doppler instrument (IRD) for the Subaru telescope to search for Earth-like planets around nearby M-dwarfs. Proceedings of SPIE, 2014, , .	0.8	36
15	Development of Laser Frequency Comb Light Source for Exoplanet Finder. The Review of Laser Engineering, 2014, 42, 706.	0.0	0
16	Distance measurement over 30 km using highly sensitive two-photon detection. , 2013, , .		0
17	Background suppression in synthesized pulse waveform by feedback control optimization for flatly broadened supercontinuum generation. Optics Express, 2013, 21, 3001.	3.4	12
18	Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry. Applied Physics Express, 2013, 6, 106601.	2.4	5

#	Article	IF	CITATIONS
19	Dark soliton synthesis using an optical pulse synthesizer and transmission through a normal-dispersion optical fiber. Optics Express, 2013, 21, 30886.	3.4	2
20	Fiber transmission of high power phase only pulse and its dispersion compensation., 2012,,.		0
21	Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime. IEICE Electronics Express, 2012, 9, 410-415.	0.8	1
22	Generation of optical short pulses with asymmetric waveforms and their imaging with a time lens. , $2012, , .$		0
23	Dark Soliton Synthesis Using Optical Pulse Synthesizer and Soliton Transmission in Normal Dispersion Regime., 2012,,.		0
24	Optical pulse compression with waveform reshaping using pulse synthesizer and cascaded fiber pair. , 2011, , .		0
25	Generation of Phase Only Pulses Using Optical Pulse Synthesizer. Applied Physics Express, 2011, 4, 092703.	2.4	3
26	High-resolution spectroscopy using interleaved 100GHz optical frequency comb scanned by phase modulator. Optics Communications, 2011, 284, 5180-5184.	2.1	4
27	Fiber Transmission Characteristics of Parabolic Pulses Generated by Optical Pulse Synthesizer. Japanese Journal of Applied Physics, 2011, 50, 092501.	1.5	7
28	Generation of phase only pulses and their fiber transmission characteristics., 2011,,.		0
29	High-resolution interferometer with broadband supercontinuum light at 1550 nm. , 2011, , .		1
30	Fiber Transmission Characteristics of Parabolic Pulses Generated by Optical Pulse Synthesizer. Japanese Journal of Applied Physics, 2011, 50, 092501.	1.5	3
31	High-resolution spectroscopy combined with the use of optical frequency comb and heterodyne detection. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1487.	2.1	7
32	Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber. Japanese Journal of Applied Physics, 2009, 48, 09LF01.	1.5	15
33	Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation. Applied Physics A: Materials Science and Processing, 2009, 95, 1101-1109.	2.3	27
34	In-situ monitoring of optical deposition of carbon nanotubes onto fiber end. Optics Express, 2009, 17, 5711.	3.4	79
35	Deposition of carbon nanotubes around microfiber via evanascent light. Optics Express, 2009, 17, 18364.	3.4	156
36	Fiber Transmission Characteristics of Optical Short Pulses Generated by Optical Pulse Synthesizer. Japanese Journal of Applied Physics, 2009, 48, 09LF02.	1.5	9

3

#	Article	IF	CITATIONS
37	Optically formed carbon nanotube sphere. Optics Express, 2008, 16, 2528.	3.4	7
38	Trimming of tapered fiber ring resonator by light injection. , 2008, , .		0
39	Optical deposition of carbon nanotubes around tapered fibers. , 2008, , .		0
40	Fabrication of Silica-Based Optical Waveguide Containing Densified Sampled Grating by UV Beam Scanning., 2007,,.		0
41	Optical Reflectometry for In-situ Monitoring of Carbon Nanotubes Deposition by Optical Tweezers. , 2007, , .		0
42	Optical reflectometry for in-situ monitoring of carbon nanotubes deposition by optical tweezers. , 2007, , .		1
43	Novel cost effective carbon nanotubes deposition technique using optical tweezer effect., 2007,,.		11
44	Optically Manipulated Deposition of Carbon Nanotubes onto Optical Fiber End. Japanese Journal of Applied Physics, 2007, 46, L988-L990.	1.5	41
45	Planar waveguide-type saturable absorber based on carbon nanotubes. Applied Physics Letters, 2006, 89, 081125.	3.3	27
46	All optical switching using carbon nanotubes loaded planar waveguide. , 2006, , .		6
47	Fabrication of Silica-Based Glass Optical Waveguide by UV Beam Scanning. Japanese Journal of Applied Physics, 2004, 43, 5850-5853.	1.5	1
48	Frequency-Shifted Multiwavelength Fiber Bragg Grating Laser Sensor. Japanese Journal of Applied Physics, 2004, 43, 8322-8324.	1.5	4