Michael W Peck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6220407/publications.pdf

Version: 2024-02-01

73 papers

3,777 citations

33 h-index 59 g-index

75 all docs 75 docs citations

75 times ranked 2821 citing authors

#	Article	IF	Citations
1	Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation. Journal of Bacteriology, 2012, 194, 686-701.	2.2	462
2	Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins, 2017, 9, 38.	3.4	232
3	Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Research, 2007, 17, 1082-1092.	5.5	228
4	Biology and Genomic Analysis of Clostridium botulinum. Advances in Microbial Physiology, 2009, 55, 183-320.	2.4	209
5	Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics, 2009, 10, 115.	2.8	128
6	Clostridium botulinum in the post-genomic era. Food Microbiology, 2011, 28, 183-191.	4.2	126
7	Regulation of Neurotoxin Production and Sporulation by a Putative <i>agrBD</i> Signaling System in Proteolytic <i>Clostridium botulinum</i> Applied and Environmental Microbiology, 2010, 76, 4448-4460.	3.1	108
8	Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 1997, 37, 37-45.	4.7	103
9	Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Research in Microbiology, 2015, 166, 303-317.	2.1	99
10	Clostridium botulinum and the safety of refrigerated processed foods of extended durability. Trends in Food Science and Technology, 1997, 8, 186-192.	15.1	92
11	Multiplex PCR for Detection of Botulinum Neurotoxin-Producing Clostridia in Clinical, Food, and Environmental Samples. Applied and Environmental Microbiology, 2009, 75, 6457-6461.	3.1	82
12	Identification of a novel botulinum neurotoxin gene cluster in <i>Enterococcus</i> . FEBS Letters, 2018, 592, 310-317.	2.8	82
13	Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project. International Journal of Food Microbiology, 2000, 60, 117-135.	4.7	79
14	Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum. International Journal of Food Microbiology, 1996, 31, 69-85.	4.7	75
15	The safety of pasteurised in-pack chilled meat products with respect to the foodborne botulism hazard. Meat Science, 2005, 70, 461-475.	5.5	75
16	Heterogeneity of Times Required for Germination and Outgrowth from Single Spores of Nonproteolytic Clostridium botulinum. Applied and Environmental Microbiology, 2005, 71, 4998-5003.	3.1	72
17	Predictive models of the effect of temperature, pH and acetic and lactic acids on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 1996, 32, 73-90.	4.7	71
18	Distribution of turbidity detection times produced by single cell-generated bacterial populations. Journal of Microbiological Methods, 2003, 55, 821-827.	1.6	71

#	Article	IF	Citations
19	Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled∆. Trends in Food Science and Technology, 2008, 19, 207-216.	15.1	64
20	Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends in Food Science and Technology, 2019, 93, 94-105.	15.1	60
21	Diversity of Proteolytic Clostridium botulinum Strains, Determined by a Pulsed-Field Gel Electrophoresis Approach. Applied and Environmental Microbiology, 2005, 71, 1311-1317.	3.1	57
22	Methane fermentation of woody biomass. Bioresource Technology, 1991, 37, 141-147.	9.6	51
23	Genomic and physiological variability within Group II (non-proteolytic) Clostridium botulinum. BMC Genomics, 2013, 14, 333.	2.8	49
24	Metabolism of acetylene by Rhodococcus A1. Archives of Microbiology, 1980, 127, 99-104.	2.2	48
25	Contrasting Effects of Heat Treatment and Incubation Temperature on Germination and Outgrowth of Individual Spores of Nonproteolytic <i>Clostridium botulinum</i> Bacteria. Applied and Environmental Microbiology, 2009, 75, 2712-2719.	3.1	46
26	Growth from Spores of Nonproteolytic <i>Clostridium botulinum</i> in Heat-Treated Vegetable Juice. Applied and Environmental Microbiology, 1999, 65, 2136-2142.	3.1	45
27	Predictive Model Describing the Effect of Prolonged Heating at 70 to 80°C and Incubation at Refrigeration Temperatures on Growth and Toxigenesis by Nonproteolylic Clostridium botulinum. Journal of Food Protection, 1997, 60, 1064-1071.	1.7	44
28	Molecular and Physiological Characterisation of Spore Germination in Clostridium botulinum and C. sporogenes. Anaerobe, 2002, 8, 89-100.	2.1	44
29	A Predictive Model That Describes the Effect of Prolonged Heating at 70 to 90°C and Subsequent Incubation at Refrigeration Temperatures on Growth from Spores and Toxigenesis by Nonproteolytic <i>Clostridium botulinum</i> in the Presence of Lysozyme. Applied and Environmental Microbiology, 1999, 65, 3449-3457.	3.1	42
30	Functional Characterisation of Germinant Receptors in Clostridium botulinum and Clostridium sporogenes Presents Novel Insights into Spore Germination Systems. PLoS Pathogens, 2014, 10, e1004382.	4.7	40
31	The Identification and Characterization of Clostridium perfringens by Real-Time PCR, Location of Enterotoxin Gene, and Heat Resistance. Foodborne Pathogens and Disease, 2008, 5, 629-639.	1.8	39
32	Effects of Carbon Dioxide on Neurotoxin Gene Expression in Nonproteolytic <i>Clostridium botulinum</i> Type E. Applied and Environmental Microbiology, 2008, 74, 2391-2397.	3.1	35
33	Rapid Affinity Immunochromatography Column-Based Tests for Sensitive Detection of <i>Clostridium botulinum</i> Neurotoxins and <i>Escherichia coli</i> O157. Applied and Environmental Microbiology, 2010, 76, 4143-4150.	3.1	35
34	Historical and Contemporary NaCl Concentrations Affect the Duration and Distribution of Lag Times from Individual Spores of Nonproteolytic Clostridium botulinum. Applied and Environmental Microbiology, 2007, 73, 2118-2127.	3.1	34
35	Thermal Inactivation of Nonproteolytic Clostridium botulinum Type E Spores in Model Fish Media and in Vacuum-Packaged Hot-Smoked Fish Products. Applied and Environmental Microbiology, 2003, 69, 4029-4036.	3.1	33
36	Impact of Clostridium botulinum genomic diversity on food safety. Current Opinion in Food Science, 2016, 10, 52-59.	8.0	32

#	Article	IF	CITATIONS
37	Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins, 2020, 12, 586.	3.4	32
38	Complete Genome Sequence of the Proteolytic Clostridium botulinum Type A5 (B3′) Strain H04402 065. Journal of Bacteriology, 2011, 193, 2351-2352.	2.2	30
39	Comparative Genomic Hybridization Analysis of Two Predominant Nordic Group I (Proteolytic) <i>Clostridium botulinum</i> Type B Clusters. Applied and Environmental Microbiology, 2009, 75, 2643-2651.	3.1	29
40	Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase. BMC Systems Biology, 2009, 3, 108.	3.0	28
41	Effects of Carbon Dioxide on Growth of Proteolytic <i>Clostridium botulinum</i> , Its Ability To Produce Neurotoxin, and Its Transcriptome. Applied and Environmental Microbiology, 2010, 76, 1168-1172.	3.1	26
42	Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell. Food Microbiology, 2015, 51, 45-50.	4.2	25
43	Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Frontiers in Microbiology, 2016, 7, 1702.	3.5	25
44	Development and Application of a New Method for Specific and Sensitive Enumeration of Spores of Nonproteolytic Clostridium botulinum Types B, E, and F in Foods and Food Materials. Applied and Environmental Microbiology, 2010, 76, 6607-6614.	3.1	24
45	Validation of Three Rapid Screening Methods for Detection of Verotoxin-Producing Escherichia coli in Foods: Interlaboratory Study. Journal of AOAC INTERNATIONAL, 2004, 87, 68-77.	1.5	22
46	On-line monitoring of the methanogenic fermentation by measurement of culture fluorescence. Biotechnology Letters, 1990, 12, 17-22.	2.2	21
47	The Type F6 Neurotoxin Gene Cluster Locus of Group II Clostridium botulinum Has Evolved by Successive Disruption of Two Different Ancestral Precursors. Genome Biology and Evolution, 2013, 5, 1032-1037.	2.5	21
48	Analysis of the Germination of Individual Clostridium sporogenes Spores with and without Germinant Receptors and Cortex-Lytic Enzymes. Frontiers in Microbiology, 2017, 8, 2047.	3.5	21
49	On-line fluorescence-monitoring of the methanogenic fermentation. Biotechnology and Bioengineering, 1992, 39, 1151-1160.	3.3	20
50	Three Classes of Plasmid (47–63 kb) Carry the Type B Neurotoxin Gene Cluster of Group II Clostridium botulinum. Genome Biology and Evolution, 2014, 6, 2076-2087.	2.5	20
51	Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins, 2020, 12, 306.	3.4	20
52	Assessment of the risk of botulism from chilled, vacuum/modified atmosphere packed fresh beef, lamb and pork held at 3°C–8°C. Food Microbiology, 2020, 91, 103544.	4.2	19
53	Further Characterization of Proteolytic <i>Clostridium botulinum</i> Type A5 Reveals that Neurotoxin Formation Is Unaffected by Loss of the <i>cntR</i> (<i>botR</i>) Promoter Sigma Factor Binding Site. Journal of Clinical Microbiology, 2010, 48, 1012-1013.	3.9	18
54	Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials. Applied and Environmental Microbiology, 2016, 82, 1675-1685.	3.1	17

#	Article	IF	Citations
55	Effect of sporulation temperature on some properties of spores of non-proteolytic Clostridium botulinum. International Journal of Food Microbiology, 1995, 28, 289-297.	4.7	16
56	Investigation of the Ability of Proteolytic Clostridium Botulinum to Multiply and Produce Toxin in Fresh Italian Pasta. Journal of Food Protection, 1998, 61, 988-993.	1.7	16
57	Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance. Applied and Environmental Microbiology, 2016, 82, 6019-6029.	3.1	15
58	Modeling the Prevalence of Bacillus cereus Spores during the Production of a Cooked Chilled Vegetable Product. Journal of Food Protection, 2004, 67, 939-946.	1.7	14
59	Evolution of ChromosomalClostridium botulinumType E Neurotoxin Gene Clusters: Evidence Provided by Their Rare Plasmid-Borne Counterparts. Genome Biology and Evolution, 2016, 8, 540-555.	2.5	13
60	Sparse Bayesian Kernel Survival Analysis for Modeling the Growth Domain of Microbial Pathogens. IEEE Transactions on Neural Networks, 2006, 17, 471-481.	4.2	11
61	Does proximity to neighbours affect germination of spores of non-proteolytic Clostridium botulinum?. Food Microbiology, 2012, 32, 104-109.	4.2	10
62	An Integrative Approach to Computational Modelling of the Gene Regulatory Network Controlling Clostridium botulinum Type A1 Toxin Production. PLoS Computational Biology, 2016, 12, e1005205.	3.2	9
63	The pattern of growth observed forClostridium botulinumtype A1 strain ATCC 19397 is influenced by nutritional status and quorum sensing: a modelling perspective. Pathogens and Disease, 2015, 73, ftv084.	2.0	8
64	Combinations of Heat Treatment and Sodium Chloride That Prevent Growth from Spores of Nonproteolytic Clostridium botulinum. Journal of Food Protection, 1997, 60, 1553-1559.	1.7	7
65	Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment. Food Microbiology, 2022, 106, 104055.	4.2	7
66	Improved assay of coenzyme F420 analogues from methanogenic bacteria. Biotechnology Letters, 1987, 1, 279-284.	0.5	6
67	The orphan germinant receptor protein GerXAO (but not GerX3b) is essential for L-alanine induced germination in Clostridium botulinum Group II. Scientific Reports, 2018, 8, 7060.	3.3	6
68	Clostridium botulinum., 0,, 31-52.		6
69	Validation of three rapid screening methods for detection of verotoxin-producing Escherichia coli in foods: interlaboratory study. Journal of AOAC INTERNATIONAL, 2004, 87, 68-77.	1.5	5
70	Anaerobic digestion of cattle slurry in an upflow anaerobic filter. Bioresource Technology, 1987, 13, 125-133.	0.3	4
71	New Elements To Consider When Modeling the Hazards Associated with Botulinum Neurotoxin in Food. Journal of Bacteriology, 2016, 198, 204-211.	2.2	4
72	Detection limit of Clostridium botulinum spores in dried mushroom samples sourced from China. International Journal of Food Microbiology, 2013, 166, 72-76.	4.7	3

#	Article	IF	CITATIONS
73	Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis. Lecture Notes in Computer Science, 2005, , 37-55.	1.3	0