
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6220244/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF              | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 1  | Degradation of deâ€esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary<br>for pollen exine formation and male fertility in cotton. Plant Biotechnology Journal, 2022, 20,<br>1054-1068. | 8.3             | 13                 |
| 2  | Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation. Genome Biology, 2022, 23, 45.                                           | 8.8             | 18                 |
| 3  | Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biology, 2022, 20, 45.                                            | 3.8             | 33                 |
| 4  | Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. New Phytologist, 2021, 231, 225-242.                                               | 7.3             | 36                 |
| 5  | The Arabidopsis Râ€SNARE VAMP714 is essential for polarisation of PIN proteins and auxin responses. New Phytologist, 2021, 230, 550-566.                                                                          | 7.3             | 10                 |
| 6  | A Singleâ€Nucleotide Mutation in a GLUTAMATE RECEPTORâ€LIKE Gene Confers Resistance to Fusarium Wilt<br>in <i>Gossypium hirsutum</i> . Advanced Science, 2021, 8, 2002723.                                        | 11.2            | 37                 |
| 7  | Plant 3D genomics: the exploration and application of chromatin organization. New Phytologist, 2021, 230, 1772-1786.                                                                                              | 7.3             | 23                 |
| 8  | Cotton pan-genome retrieves the lost sequences and genes during domestication and selection.<br>Genome Biology, 2021, 22, 119.                                                                                    | 8.8             | 76                 |
| 9  | Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. Journal of Experimental Botany, 2021, 72, 4721-4743.       | 4.8             | 20                 |
| 10 | A combination of genomeâ€wide and transcriptomeâ€wide association studies reveals genetic elements<br>leading to male sterility during high temperature stress in cotton. New Phytologist, 2021, 231, 165-181.    | 7.3             | 33                 |
| 11 | Gibberellin signaling mediates lateral root inhibition in response to K+-deprivation. Plant Physiology, 2021, 185, 1198-1215.                                                                                     | 4.8             | 21                 |
| 12 | Silencing of aÂ <i>LIM</i> gene in cotton exhibits enhanced resistance against <i>Apolygus lucorum</i> .<br>Journal of Cellular Physiology, 2021, 236, 5921-5936.                                                 | 4.1             | 8                  |
| 13 | Highâ€efficient and precise base editing of C•G to T•A in the allotetraploid cotton ( <i>Gossypium) Tj ETQq1<br/>2020, 18, 45-56.</i>                                                                             | 1 0.7843<br>8.3 | 314 rgBT /O<br>114 |
| 14 | Vesicle Transport in Plants: A Revised Phylogeny of SNARE Proteins. Evolutionary Bioinformatics, 2020, 16, 117693432095657.                                                                                       | 1.2             | 12                 |
| 15 | Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. New Phytologist, 2020, 226, 1738-1752.                           | 7.3             | 74                 |
| 16 | The application of a heatâ€inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton<br>( <i>G.Àhirsutum</i> ) plants. Plant Biotechnology Journal, 2020, 18, 2436-2443.                          | 8.3             | 58                 |
| 17 | Will rising atmospheric <scp>CO<sub>2</sub></scp> concentration inhibit nitrate assimilation in shoots but enhance it in roots of <scp>C<sub>3</sub></scp> plants?. Physiologia Plantarum, 2020, 170, 40-45.      | 5.2             | 19                 |
| 18 | CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Offâ€Target<br>Evaluation, and Strategies to Mitigate Offâ€Target Effects. Advanced Science, 2020, 7, 1902312.                    | 11.2            | 162                |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching. Statistical Applications in Genetics and Molecular Biology, 2020, 19, .                                                         | 0.6  | 2         |
| 20 | Multiâ€omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnology Journal, 2019, 17, 435-450.                                                 | 8.3  | 88        |
| 21 | The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis.<br>Nature Communications, 2019, 10, 4702.                                                                                         | 12.8 | 115       |
| 22 | CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science, 2019, 24, 1102-1125.                                                                                                            | 8.8  | 292       |
| 23 | GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase<br>activity of GhPUB17. Plant Molecular Biology, 2019, 99, 379-393.                                                           | 3.9  | 18        |
| 24 | Elevated CO2 effects on nitrogen assimilation and growth of C3 vascular plants are similar regardless of N-form assimilated. Journal of Experimental Botany, 2019, 70, 683-690.                                                      | 4.8  | 52        |
| 25 | Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics, 2019, 51, 224-229.                                                                                | 21.4 | 468       |
| 26 | Whole genome sequencing reveals rare offâ€ŧarget mutations and considerable inherent genetic or/and<br>somaclonal variations in <scp>CRISPR</scp> /Cas9â€edited cotton plants. Plant Biotechnology Journal,<br>2019, 17, 858-868.    | 8.3  | 159       |
| 27 | The GhmiR157a–GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. Journal of Experimental Botany, 2018, 69, 1081-1093.  | 4.8  | 66        |
| 28 | Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions. BMC Systems Biology, 2018, 12, 1.                                                           | 3.0  | 87        |
| 29 | Epidermal expression of a sterol biosynthesis gene regulates root growth by a non-cell autonomous<br>mechanism in <i>Arabidopsis</i> . Development (Cambridge), 2018, 145, .                                                         | 2.5  | 14        |
| 30 | A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation.<br>New Phytologist, 2018, 217, 163-178.                                                                                       | 7.3  | 173       |
| 31 | Laccase GhLac1 Modulates Broad-Spectrum Biotic Stress Tolerance via Manipulating Phenylpropanoid<br>Pathway and Jasmonic Acid Synthesis. Plant Physiology, 2018, 176, 1808-1823.                                                     | 4.8  | 186       |
| 32 | Long noncoding <scp>RNA</scp> s involve in resistance to <i>Verticillium dahliae</i> , a fungal disease<br>in cotton. Plant Biotechnology Journal, 2018, 16, 1172-1185.                                                              | 8.3  | 121       |
| 33 | A recovery principle provides insight into auxin pattern control in the Arabidopsis root. Scientific<br>Reports, 2017, 7, 43004.                                                                                                     | 3.3  | 16        |
| 34 | Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nature<br>Genetics, 2017, 49, 579-587.                                                                                                     | 21.4 | 367       |
| 35 | A transgenic strategy for controlling plant bugs ( <i>Adelphocoris suturalis</i> ) through expression<br>of doubleâ€stranded RNA homologous to fatty acylâ€coenzyme A reductase in cotton. New Phytologist,<br>2017, 215, 1173-1185. | 7.3  | 53        |
| 36 | Crosstalk Complexities between Auxin, Cytokinin, and EthyleneÂin Arabidopsis Root Development: From<br>Experiments to Systems Modeling, and Back Again. Molecular Plant, 2017, 10, 1480-1496.                                        | 8.3  | 146       |

| #  | Article                                                                                                                                                                                                                   | IF            | CITATIONS                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|
| 37 | Suppression of the homeobox gene <i>HDTF1</i> enhances resistance to <i>Verticillium dahliae</i> and <i>Botrytis cinerea</i> in cotton. Journal of Integrative Plant Biology, 2016, 58, 503-513.                          | 8.5           | 63                       |
| 38 | ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton.<br>Molecular and Cellular Proteomics, 2016, 15, 2108-2124.                                                               | 3.8           | 59                       |
| 39 | Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytologist, 2016, 211, 225-239.                                          | 7.3           | 221                      |
| 40 | On the nature of fibres grown from nanodiamond colloids. Materials Chemistry and Physics, 2016, 173, 325-332.                                                                                                             | 4.0           | 12                       |
| 41 | Long noncoding <scp>RNA</scp> s and their proposed functions in fibre development of cotton<br>( <i>Gossypium</i> spp.). New Phytologist, 2015, 207, 1181-1197.                                                           | 7.3           | 160                      |
| 42 | Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and<br>gene expression in <i>Arabidopsis thaliana</i> wildâ€ŧype and mutant roots. New Phytologist, 2015, 207,<br>1110-1122. | 7.3           | 37                       |
| 43 | Some fundamental aspects of modeling auxin patterning in the context of auxin-ethylene-cytokinin<br>crosstalk. Plant Signaling and Behavior, 2015, 10, e1056424.                                                          | 2.4           | 5                        |
| 44 | Programmed cell death during development of cowpea ( <scp><i>V</i></scp> <i>igna unguiculata</i> ) Tj ETQqC                                                                                                               | ) 0 0 grgBT / | Overlock 10 <sup>-</sup> |
| 45 | Hormonal crosstalk for root development: a combined experimental and modeling perspective.<br>Frontiers in Plant Science, 2014, 5, 116.                                                                                   | 3.6           | 51                       |
| 46 | The calcium sensor <scp>G</scp> h <scp>C</scp> a <scp>M</scp> 7 promotes cotton fiber elongation by modulating reactive oxygen species ( <scp>ROS</scp> ) production. New Phytologist, 2014, 202, 509-520.                | 7.3           | 121                      |
| 47 | Small <scp>RNA</scp> and degradome profiling reveals a role for mi <scp>RNA</scp> s and their targets in the developing fibers of <i><scp>G</scp>ossypium barbadense</i> . Plant Journal, 2014, 80, 331-344.              | 5.7           | 81                       |
| 48 | Elucidating the regulation of complex signalling systems in plant cells. Biochemical Society Transactions, 2014, 42, 219-223.                                                                                             | 3.4           | 4                        |
| 49 | Distinct and conserved transcriptomic changes during nematodeâ€induced giant cell development in<br>tomato compared with Arabidopsis: a functional role for gene repression. New Phytologist, 2013, 197,<br>1276-1290.    | 7.3           | 98                       |
| 50 | Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. Journal of Experimental Botany, 2013, 64, 1521-1536.                                                              | 4.8           | 179                      |
| 51 | Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola<br>in rice roots. Journal of Experimental Botany, 2013, 64, 3885-3898.                                                  | 4.8           | 128                      |
| 52 | Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root development. Frontiers in Plant Science, 2013, 4, 75.                                                                                               | 3.6           | 47                       |
| 53 | POLARIS. , 2013, , 40-45.                                                                                                                                                                                                 |               | 0                        |
| 54 | New editorial leadership: new ideas, but same old values. New Phytologist, 2012, 195, 501-502.                                                                                                                            | 7.3           | 0                        |

New editorial leadership: new ideas, but same old values. New Phytologist, 2012, 195, 501-502. 54 7.3

4

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. Journal of Plant Physiology, 2012, 169, 421-428.                                                                                                                             | 3.5 | 22        |
| 56 | Roots, water, and nutrient acquisition: let's get physical. Trends in Plant Science, 2012, 17, 701-710.                                                                                                                                                               | 8.8 | 141       |
| 57 | Water supply and not nitrate concentration determines primary root growth in <i>Arabidopsis</i> .<br>Plant, Cell and Environment, 2011, 34, 1630-1638.                                                                                                                | 5.7 | 31        |
| 58 | The effects of extracellular adenosine 5′-triphosphate on the tobacco proteome. Proteomics, 2010, 10, 235-244.                                                                                                                                                        | 2.2 | 34        |
| 59 | Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant<br>Journal, 2010, 61, 698-712.                                                                                                                                          | 5.7 | 216       |
| 60 | Modelling and experimental analysis of hormonal crosstalk in <i>Arabidopsis</i> . Molecular Systems<br>Biology, 2010, 6, 373.                                                                                                                                         | 7.2 | 64        |
| 61 | Analysis of Vascular Development in the hydra Sterol Biosynthetic Mutants of Arabidopsis. PLoS ONE, 2010, 5, e12227.                                                                                                                                                  | 2.5 | 25        |
| 62 | Extracellular ATP. Plant Signaling and Behavior, 2009, 4, 1078-1080.                                                                                                                                                                                                  | 2.4 | 9         |
| 63 | MERISTEMâ€DEFECTIVE, an RS domain protein, is required for the correct meristem patterning and function in Arabidopsis. Plant Journal, 2009, 57, 857-869.                                                                                                             | 5.7 | 32        |
| 64 | Extracellular ATP is a regulator of pathogen defence in plants. Plant Journal, 2009, 60, 436-448.                                                                                                                                                                     | 5.7 | 116       |
| 65 | Isolation of RNA from laserâ€captureâ€microdissected giant cells at early differentiation stages suitable<br>for differential transcriptome analysis. Molecular Plant Pathology, 2009, 10, 523-535.                                                                   | 4.2 | 39        |
| 66 | Laser-Capture Microdissection to Study Global Transcriptional Changes During Plant Embryogenesis.<br>Methods in Molecular Biology, 2008, 427, 111-120.                                                                                                                | 0.9 | 10        |
| 67 | Transcriptional Profiling of the Arabidopsis Embryo. Plant Physiology, 2007, 143, 924-940.                                                                                                                                                                            | 4.8 | 119       |
| 68 | Discovery via Proteomics of a Novel Cell Signalling Pathway in Plants Involving Extracellular ATP. , 2007, , 71-86.                                                                                                                                                   |     | 0         |
| 69 | Polarity in Plants. Annual Plant Reviews, Volume 12. Edited by Keith Lindsey. Oxford: Blackwell<br>Publishing; Boca Raton (Florida): CRC Press. \$169.95. xiv + 346 p + 1 pl; ill.; index. ISBN: 0–8493–2344–4.<br>2004 Quarterly Review of Biology, 2006, 81, 68-68. | 0.1 | 0         |
| 70 | Apical–basal polarity: why plant cells don't standon their heads. Trends in Plant Science, 2006, 11,<br>12-14.                                                                                                                                                        | 8.8 | 37        |
| 71 | The POLARIS Peptide of Arabidopsis Regulates Auxin Transport and Root Growth via Effects on Ethylene Signaling. Plant Cell, 2006, 18, 3058-3072.                                                                                                                      | 6.6 | 146       |
| 72 | The turnip Mutant of Arabidopsis Reveals That LEAFY COTYLEDON1 Expression Mediates the Effects of Auxin and Sugars to Promote Embryonic Cell Identity. Plant Physiology, 2006, 142, 526-541.                                                                          | 4.8 | 91        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. Journal of Experimental Botany, 2006, 57, 1553-1562.                                                       | 4.8 | 102       |
| 74 | Characterization of FaRB7, a near root-specific gene from strawberry (Fragariaxananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. Journal of Experimental Botany, 2006, 57, 3901-3910. | 4.8 | 36        |
| 75 | The POLARIS Peptide. , 2006, , 23-27.                                                                                                                                                                                    |     | 1         |
| 76 | Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant Journal, 2005, 42, 111-123.                                                                                 | 5.7 | 190       |
| 77 | Extracellular ATP Functions as an Endogenous External Metabolite Regulating Plant Cell Viability.<br>Plant Cell, 2005, 17, 3019-3034.                                                                                    | 6.6 | 172       |
| 78 | Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Annals of Applied Biology, 2004, 145, 25-40.                                 | 2.5 | 127       |
| 79 | KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation.<br>Plant Molecular Biology, 2004, 54, 71-84.                                                                         | 3.9 | 86        |
| 80 | Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis. Planta, 2004, 219, 773-83.                             | 3.2 | 28        |
| 81 | EXORDIUM- a gene expressed in proliferating cells and with a role in meristem function, identified by promoter trapping in Arabidopsis. Plant Journal, 2003, 33, 61-73.                                                  | 5.7 | 39        |
| 82 | Genes and signalling in root development. New Phytologist, 2003, 158, 11-38.                                                                                                                                             | 7.3 | 92        |
| 83 | Genes and signalling in root development. New Phytologist, 2003, 158, 11-38.                                                                                                                                             | 7.3 | 130       |
| 84 | Importance of plant sterols in pattern formation and hormone signalling. Trends in Plant Science, 2003, 8, 521-525.                                                                                                      | 8.8 | 125       |
| 85 | The POLARIS Gene of Arabidopsis Encodes a Predicted Peptide Required for Correct Root Growth and Leaf Vascular Patterning. Plant Cell, 2002, 14, 1705-1721.                                                              | 6.6 | 164       |
| 86 | hydra Mutants of Arabidopsis Are Defective in Sterol Profiles and Auxin and Ethylene Signaling. Plant<br>Cell, 2002, 14, 1017-1031.                                                                                      | 6.6 | 187       |
| 87 | Peptides: new signalling molecules in plants. Trends in Plant Science, 2002, 7, 78-83.                                                                                                                                   | 8.8 | 129       |
| 88 | Plant peptide hormones: The long and the short of it. Current Biology, 2001, 11, R741-R743.                                                                                                                              | 3.9 | 20        |
| 89 | Concerted Efforts To Develop Handles For Plant Parasitic Nematode Control. Developments in Plant<br>Genetics and Breeding, 2000, 6, 159-167.                                                                             | 0.6 | 0         |
| 90 | Polarity and signalling in plant embryogenesis. Journal of Experimental Botany, 2000, 51, 971-983.                                                                                                                       | 4.8 | 104       |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | On the relationship between the plant cell and the plant. Seminars in Cell and Developmental Biology, 1998, 9, 171-177.                                                | 5.0 | 9         |
| 92  | Introduction: The green signal for plant pattern formation. Seminars in Cell and Developmental Biology, 1998, 9, 169-170.                                              | 5.0 | 0         |
| 93  | Use of the GUS Reporter Gene. Methods in Biotechnology, 1998, , 39-47.                                                                                                 | 0.2 | 1         |
| 94  | Potato Transformation. , 1998, 81, 353-358.                                                                                                                            |     | 3         |
| 95  | Activities of CaMV 35S andnospromoters in pollen: implications for field release of transgenic plants.<br>Journal of Experimental Botany, 1997, 48, 265-275.           | 4.8 | 124       |
| 96  | Promoter trap markers differentiate structural and positional components of polar development in<br>Arabidopsis Plant Cell, 1997, 9, 1713-1725.                        | 6.6 | 94        |
| 97  | Regulatory Sequences of Arabidopsis Drive Reporter Gene Expression in Nematode Feeding Structures.<br>Plant Cell, 1997, 9, 2119.                                       | 6.6 | 1         |
| 98  | Promoter Trap Markers Differentiate Structural and Positional Components of Polar Development in<br>Arabidopsis. Plant Cell, 1997, 9, 1713.                            | 6.6 | 25        |
| 99  | Regulatory sequences of Arabidopsis drive reporter gene expression in nematode feeding structures<br>Plant Cell, 1997, 9, 2119-2134.                                   | 6.6 | 99        |
| 100 | A novel nucleic acid helicase gene identified by promoter trapping in Arabidopsis. Plant Journal, 1997,<br>11, 1307-1314.                                              | 5.7 | 39        |
| 101 | A novel transient assay system demonstrates that DT-Atsm is a temperature-sensitive toxin in plant<br>tissues. Plant Science, 1996, 113, 59-65.                        | 3.6 | 3         |
| 102 | The Significance of Microspore Division and Division Symmetry for Vegetative Cell-Specific Transcription and Generative Cell Differentiation. Plant Cell, 1995, 7, 65. | 6.6 | 33        |
| 103 | Pollen viability and transgene expression following storage in honey. Transgenic Research, 1995, 4, 226-231.                                                           | 2.4 | 16        |
| 104 | Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development. Transgenic Research, 1995, 4, 291-305.                | 2.4 | 34        |
| 105 | Agrobacterium-Mediated Transformation of Arabidopsis thaliana: Application in T-DNA Tagging. , 1995, 49, 63-76.                                                        |     | 7         |
| 106 | Electroporation of Tobacco Leaf Protoplasts Using Plasmid DNA or Total Genomic DNA. , 1995, 55,<br>89-108.                                                             |     | 5         |
| 107 | Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping.<br>Plant Journal, 1994, 5, 895-903.                                 | 5.7 | 89        |
| 108 | Methanol does not specifically inhibit endogenous β-glucuronidase (GUS) activity. Plant Science, 1994,<br>97, 61-67.                                                   | 3.6 | 15        |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Differential activation and conserved vegetative cell-specific activity of a late pollen promoter in species with bicellular and tricellular pollen. Plant Journal, 1994, 5, 543-550. | 5.7  | 15        |
| 110 | Differential activation and conserved vegetative cell-specific activity of a late pollen promoter in species with bicellular and tricellular pollen. Plant Journal, 1994, 5, 543-550. | 5.7  | 39        |
| 111 | Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs. Plant Journal, 1993, 4, 863-873.                 | 5.7  | 179       |
| 112 | Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Research, 1993, 2, 33-47.                                           | 2.4  | 132       |
| 113 | Embryogenesis: a Question of Pattern. Journal of Experimental Botany, 1993, 44, 359-374.                                                                                              | 4.8  | 69        |
| 114 | Gene rescue in plants by direct gene transfer of total genomic DNA into protoplasts. Nucleic Acids<br>Research, 1992, 20, 3977-3982.                                                  | 14.5 | 8         |
| 115 | Genetic manipulation of crop plants. Journal of Biotechnology, 1992, 26, 1-28.                                                                                                        | 3.8  | 36        |
| 116 | High-frequency transformation ofArabidopsis thaliana byAgrobacterium tumefaciens. Plant<br>Molecular Biology Reporter, 1992, 10, 178-189.                                             | 1.8  | 61        |
| 117 | Regeneration and transformation of sugarbeet by Agrobacterium tumefaciens. , 1991, , 321-333.                                                                                         |      | 1         |
| 118 | Shoot cultures and root cultures of tobacco. , 1991, , 67-79.                                                                                                                         |      | 1         |
| 119 | Electroporation of cells. Physiologia Plantarum, 1990, 79, 168-172.                                                                                                                   | 5.2  | 13        |
| 120 | Transformation of Sugarbeet (Beta vulgaris) byAgrobacterium tumefaciens. Journal of Experimental<br>Botany, 1990, 41, 529-536.                                                        | 4.8  | 86        |
| 121 | Stable transformation of sugarbeet protoplasts by electroporation. Plant Cell Reports, 1989, 8, 71-74.                                                                                | 5.6  | 35        |
| 122 | Plant Tissue Culture. , 1988, 4, 499-518.                                                                                                                                             |      | 2         |
| 123 | Plant Protoplast Fusion. , 1988, 4, 481-498.                                                                                                                                          |      | 0         |
| 124 | Direct Gene Transfer into Plant Protoplasts. , 1988, 4, 519-536.                                                                                                                      |      | 1         |
| 125 | [36] Techniques for the immobilization of plant cells. Methods in Enzymology, 1987, , 410-421.                                                                                        | 1.0  | 5         |
| 126 | The permeability of electroporated cells and protoplasts of sugar beet. Planta, 1987, 172, 346-355.                                                                                   | 3.2  | 35        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant<br>Molecular Biology, 1987, 10, 43-52.                                                     | 3.9 | 85        |
| 128 | Incorporation of [14C]phenylalanine and [14C]cinnamic acid into capsaicin in cultured cells of Capsicum frutescens. Phytochemistry, 1986, 25, 2793-2801.                                 | 2.9 | 25        |
| 129 | Manipulation, by nutrient limitation, of the biosynthetic activity of immobilized cells of Capsicum<br>frutescens Mill. cv. annuum. Planta, 1985, 165, 126-133.                          | 3.2 | 58        |
| 130 | The Viability and Biosynthetic Activity of Cells of Capsicum frutescens Mill. cv. annuum Immobilized in<br>Reticulate Polyurethane. Journal of Experimental Botany, 1984, 35, 1684-1696. | 4.8 | 44        |
| 131 | The synthetic potential of immobilised cells of Capsicum frutescens Mill cv. annuum. Planta, 1984, 162, 495-501.                                                                         | 3.2 | 94        |
| 132 | The Relationship between Growth Rate, Differentiation and Alkaloid Accumulation in Cell Cultures.<br>Journal of Experimental Botany, 1983, 34, 1055-1065.                                | 4.8 | 178       |
| 133 | A novel method for the immobilisation and culture of plant cells. FEBS Letters, 1983, 155, 143-149.                                                                                      | 2.8 | 137       |