Farrah Bashey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6220142/publications.pdf

Version: 2024-02-01

516215 476904 1,304 29 16 29 citations g-index h-index papers 29 29 29 1666 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Pre―and postâ€association barriers to host switching in sympatric mutualists. Journal of Evolutionary Biology, 2022, 35, 962-972.	0.8	2
2	Postâ€essociation barrier to host switching maintained despite strong selection in a novel mutualism. Ecology and Evolution, 2022, 12, .	0.8	1
3	Evolutionary consequences of feedbacks between within-host competition and disease control. Evolution, Medicine and Public Health, 2020, 2020, 30-34.	1.1	7
4	Symbiontâ€mediated competition: <i>Xenorhabdus bovienii</i> confer an advantage to their nematode host <i>Steinernema affine</i> by killing competitor <i>Steinernema feltiae</i> Environmental Microbiology, 2019, 21, 3229-3243.	1.8	18
5	Suppression of bacteriocin resistance using live, heterospecific competitors. Evolutionary Applications, 2019, 12, 1191-1200.	1.5	4
6	Evolution of increased virulence is associated with decreased spite in the insect-pathogenic bacterium <i>Xenorhabdus nematophila</i> . Biology Letters, 2019, 15, 20190432.	1.0	10
7	Tradeâ€off between reproductive and antiâ€competitor abilities in an insect–parasitic nematode–bacteria symbiosis. Ecology and Evolution, 2018, 8, 10847-10856.	0.8	8
8	Plastic responses to competition: Does bacteriocin production increase in the presence of nonself competitors?. Ecology and Evolution, 2018, 8, 6880-6888.	0.8	8
9	Nematode-bacteria mutualism: Selection within the mutualism supersedes selection outside of the mutualism. Evolution; International Journal of Organic Evolution, 2016, 70, 687-695.	1.1	17
10	Aging alters interspecific competition between two sympatric insect–parasitic nematode species. Ecology and Evolution, 2016, 6, 3750-3759.	0.8	2
11	Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140301.	1.8	74
12	ALTERNATIVE PATHS TO SUCCESS IN A PARASITE COMMUNITY: WITHIN-HOST COMPETITION CAN FAVOR HIGHER VIRULENCE OR DIRECT INTERFERENCE. Evolution; International Journal of Organic Evolution, 2013, 67, 900-907.	1.1	33
13	Natal-Host Environmental Effects on Juvenile Size, Transmission Success, and Operational Sex Ratio in the Entomopathogenic NematodeSteinernema carpocapsae. Journal of Parasitology, 2012, 98, 1095-1100.	0.3	8
14	Bacteriocinâ€mediated interactions within and between coexisting species. Ecology and Evolution, 2012, 2, 2521-2526.	0.8	42
15	Spiteful interactions between sympatric natural isolates of <i>Xenorhabdus bovienii</i> benefit kin and reduce virulence. Journal of Evolutionary Biology, 2012, 25, 431-437.	0.8	32
16	Virulence and competitive ability in an obligately killing parasite. Oikos, 2011, 120, 1539-1545.	1.2	17
17	THE EVOLUTION OF SPITE: POPULATION STRUCTURE AND BACTERIOCIN-MEDIATED ANTAGONISM IN TWO NATURAL POPULATIONS OF XENORHABDUS BACTERIA. Evolution; International Journal of Organic Evolution, 2010, 64, 3198-3204.	1.1	37
18	Spiteful Interactions in a Natural Population of the Bacterium <i>Xenorhabdus bovienii</i> Naturalist, 2010, 175, 374-381.	1.0	33

#	Article	IF	CITATIONS
19	GROUP SELECTION ON POPULATION SIZE AFFECTS LIFE-HISTORY PATTERNS IN THE ENTOMOPATHOGENIC NEMATODESTEINERNEMA CARPOCAPSAE. Evolution; International Journal of Organic Evolution, 2009, 63, 1301-1311.	1.1	13
20	Low migration decreases interference competition among parasites and increases virulence. Journal of Evolutionary Biology, 2008, 21, 1245-1251.	0.8	24
21	Competition as a selective mechanism for larger offspring size in guppies. Oikos, 2008, 117, 104-113.	1.2	97
22	CROSS-GENERATIONAL ENVIRONMENTAL EFFECTS AND THE EVOLUTION OF OFFSPRING SIZE IN THE TRINIDADIAN GUPPY POECILIA RETICULATA. Evolution; International Journal of Organic Evolution, 2006, 60, 348-361.	1.1	113
23	CROSS-GENERATIONAL ENVIRONMENTAL EFFECTS AND THE EVOLUTION OF OFFSPRING SIZE IN THE TRINIDADIAN GUPPY POECILIA RETICULATA. Evolution; International Journal of Organic Evolution, 2006, 60, 348.	1.1	8
24	Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata. Evolution; International Journal of Organic Evolution, 2006, 60, 348-61.	1.1	38
25	A Comparison of the Suitability of Alizarin Red S and Calcein for Inducing a Nonlethally Detectable Mark in Juvenile Guppies. Transactions of the American Fisheries Society, 2004, 133, 1516-1523.	0.6	65
26	r- ANDK-SELECTION REVISITED: THE ROLE OF POPULATION REGULATION IN LIFE-HISTORY EVOLUTION. Ecology, 2002, 83, 1509-1520.	1.5	393
27	r- and K-Selection Revisited: The Role of Population Regulation in Life-History Evolution. Ecology, 2002, 83, 1509.	1.5	128
28	The Suitability of Calcein to Mark Poeciliid Fish and a New Method of Detection. Transactions of the American Fisheries Society, 2001, 130, 501-507.	0.6	50
29	Elevational Variation in the Thermal Constraints on and Microhabitat Preferences of the Greater Earless Lizard Cophosaurus texanus. Copeia, 1997, 1997, 725.	1.4	22