Eun-Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/621961/publications.pdf

Version: 2024-02-01

		1040056	1125743
19	178	9	13
papers	citations	h-index	g-index
20	20	20	302
20	20	20	302
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Production of transgenic pig as an Alzheimer's disease model using a multi-cistronic vector system. PLoS ONE, 2017, 12, e0177933.	2.5	25
2	Antioxidant hesperetin improves the quality of porcine oocytes during aging in vitro. Molecular Reproduction and Development, 2019, 86, 32-41.	2.0	24
3	Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine \hat{l}^2 -casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination. Zygote, 2016, 24, 442-456.	1.1	17
4	Fibroblast growth factor 10 markedly improves in vitro maturation of porcine cumulusâ€oocyte complexes. Molecular Reproduction and Development, 2017, 84, 67-75.	2.0	15
5	Inflammation and Rho-Associated Protein Kinase-Induced Brain Changes in Vascular Dementia. Biomedicines, 2022, 10, 446.	3.2	14
6	The antioxidant icariin protects porcine oocytes from age-related damage in vitro. Animal Bioscience, 2021, 34, 546-557.	2.0	13
7	Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro. Development & Reproduction, 2015, 19, 119-126.	0.5	12
8	Effect of Glycosaminoglycans on <italic>In vitro</italic> Fertilizing Ability and <italic>In vitro</italic> Developmental Potential of Bovine Embryos. Asian-Australasian Journal of Animal Sciences, 2013, 26, 178-188.	2.4	12
9	Anti-Inflammatory Effects of M-MSCs in DNCB-Induced Atopic Dermatitis Mice. Biomedicines, 2020, 8, 439.	3.2	10
10	The antioxidant dieckol reduces damage of oxidative stressâ€exposed porcine oocytes and enhances subsequent parthenotes embryo development. Molecular Reproduction and Development, 2021, 88, 349-361.	2.0	8
11	Fibroblast Growth Factor 10 Enhances the Developmental Efficiency of Somatic Cell Nuclear Transfer Embryos by Accelerating the Kinetics of Cleavage During <i>In Vitro</i> Maturation. Cellular Reprogramming, 2018, 20, 196-204.	0.9	6
12	EGF-Loaded Hyaluronic Acid Based Microparticles as Effective Carriers in a Wound Model. Particle and Particle Systems Characterization, 2017, 34, 1600320.	2.3	5
13	Treatment of allicin improves maturation of immature oocytes and subsequent developmental ability of preimplantation embryos. Zygote, 2017, 25, 480-488.	1.1	4
14	Comparison of three antioxidants in chemical and biological assays on porcine oocytes during ageing <i>in vitro</i> . Zygote, 2022, 30, 561-570.	1.1	4
15	Lysophosphatidic acid accelerates development of porcine embryos by activating formation of the blastocoel. Molecular Reproduction and Development, 2018, 85, 62-71.	2.0	2
16	Pioglitazone improves porcine oocyte maturation and subsequent parthenogenetic embryo development in vitro by increasing lipid metabolism. Molecular Reproduction and Development, 2019, 86, 1245-1254.	2.0	2
17	Evaluation of Semen Quality of Jeju Black Cattle (JBC) to Select Bulls Optimal for Breeding and Establish Freezing Conditions Suitable for JBC Sperm. Animals, 2022, 12, 535.	2.3	2
18	Comparison of the improving embryo development effects of Sasa quelpaertensis Nakai extract, p-coumaric acid, and myricetin on porcine oocytes according to their antioxidant capacities. Theriogenology, 2022, 185, 97-108.	2.1	2

#	Article	IF	CITATIONS
19	Immunomodulation of Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Rotator Cuff Tears Model. Biomedicines, 2022, 10, 1549.	3.2	1