Xiao-Wei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6219497/publications.pdf Version: 2024-02-01

XIAO-WELLIANC

#	Article	IF	CITATIONS
1	Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology, 2015, 527, 433-441.	2.3	111
2	Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophysical Research Letters, 2009, 36, .	1.5	102
3	Groundwater flow, transport, and residence times through topographyâ€driven basins with exponentially decreasing permeability and porosity. Water Resources Research, 2010, 46, .	1.7	90
4	Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 2016, 533, 103-113.	2.3	76
5	Equações semi-empÃricas para a diminuição sistemática da permeabilidade com a profundidade em meios porosos e fracturados. Hydrogeology Journal, 2010, 18, 839-850.	0.9	73
6	An analytical study on stagnation points in nested flow systems in basins with depthâ€decaying hydraulic conductivity. Water Resources Research, 2011, 47, .	1.7	72
7	Simultaneous rejuvenation and aging of groundwater in basins due to depthâ€decaying hydraulic conductivity and porosity. Geophysical Research Letters, 2010, 37, .	1.5	68
8	Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. Scientific Reports, 2015, 5, 8814.	1.6	61
9	A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resources Research, 2012, 48, .	1.7	52
10	Estimation of fracture normal stiffness using a transmissivity-depth correlation. International Journal of Rock Mechanics and Minings Sciences, 2009, 46, 51-58.	2.6	47
11	Improving Estimation of Submarine Groundwater Discharge Using Radium and Radon Tracers: Application in Jiaozhou Bay, China. Journal of Geophysical Research: Oceans, 2017, 122, 8263-8277.	1.0	42
12	Evaluation of depth-dependent porosity and bulk modulus of a shear using permeability–depth trends. International Journal of Rock Mechanics and Minings Sciences, 2009, 46, 1175-1181.	2.6	39
13	Estimation of seawater–groundwater exchange rate: case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China). Hydrogeology Journal, 2015, 23, 265-275.	0.9	39
14	A new analytical solution of topographyâ€driven flow in a drainage basin with depthâ€dependent anisotropy of permeability. Water Resources Research, 2011, 47, .	1.7	38
15	The influences of mining subsidence on the ecological environment and public infrastructure: a case study at the Haolaigou Iron Ore Mine in Baotou, China. Environmental Earth Sciences, 2009, 59, 803-810.	1.3	37
16	Numerical simulations of steady-state salinity distribution and submarine groundwater discharges in homogeneous anisotropic coastal aquifers. Advances in Water Resources, 2014, 74, 318-328.	1.7	34
17	A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations. Journal of Hydrology, 2017, 548, 498-507.	2.3	33
18	Tidal groundwater flow and its ecological effects in a brackish marsh at the mouth of a large sub-tropical river. Journal of Hydrology, 2017, 555, 198-212.	2.3	33

XIAO-WEI JIANG

#	Article	IF	CITATIONS
19	A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China. Hydrogeology Journal, 2018, 26, 1657-1668.	0.9	30
20	Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Advances in Water Resources, 2017, 108, 139-156.	1.7	29
21	Fractionation of Mg isotopes by clay formation and calcite precipitation in groundwater with long residence times in a sandstone aquifer, Ordos Basin, China. Geochimica Et Cosmochimica Acta, 2018, 237, 261-274.	1.6	29
22	Estimation of rock mass deformation modulus using variations in transmissivity and RQD with depth. International Journal of Rock Mechanics and Minings Sciences, 2009, 46, 1370-1377.	2.6	28
23	Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophysical Research Letters, 2014, 41, 2812-2819.	1.5	28
24	An analytical study on artesian flow conditions in unconfinedâ€aquifer drainage basins. Water Resources Research, 2015, 51, 8658-8667.	1.7	25
25	On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems. Journal of Hydrology, 2016, 543, 47-58.	2.3	24
26	Analyse théorique de la distribution de la température de l'eau souterraine à l'échelle d'un bas Hydrogeology Journal, 2015, 23, 397-404.	ssin. 0.9	22
27	Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems. Advances in Water Resources, 2014, 69, 1-12.	1.7	21
28	Measuring in situ vertical hydraulic conductivity in tidal environments. Advances in Water Resources, 2014, 70, 118-130.	1.7	20
29	Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling. Hydrology and Earth System Sciences, 2021, 25, 4243-4257.	1.9	20
30	An analytical study on nested flow systems in a TÃ ³ thian basin with a periodically changing water table. Journal of Hydrology, 2018, 556, 813-823.	2.3	19
31	Behaviors of lithium and its isotopes in groundwater with different concentrations of dissolved CO2. Geochimica Et Cosmochimica Acta, 2022, 326, 313-327.	1.6	15
32	Steady-state discharge into tunnels in formations with random variability and depth–decaying trend of hydraulic conductivity. Journal of Hydrology, 2010, 387, 320-327.	2.3	13
33	Loading effect of water table variation and density effect on tidal head fluctuations in a coastal aquifer system. Water Resources Research, 2012, 48, .	1.7	13
34	An analytical study on groundwater flow in drainage basins with horizontal wells. Hydrogeology Journal, 2014, 22, 1625-1638.	0.9	13
35	Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China. Hydrogeology Journal, 2021, 29, 567-577.	0.9	8
36	An analytical study on threeâ€dimensional versus twoâ€dimensional water tableâ€induced flow patterns in a Tóthian basin. Hydrological Processes, 2017, 31, 4006-4018.	1.1	7

XIAO-WEI JIANG

#	Article	IF	CITATIONS
37	A numerical study on the occurrence of flowing wells in the discharge area of basins due to the upward hydraulic gradient induced wellbore flow. Hydrological Processes, 2018, 32, 1682-1694.	1.1	7
38	Why mixed groundwater at the outlet of open flowing wells in unconfined-aquifer basins can represent deep groundwater: implications for sampling in long-screen wells. Hydrogeology Journal, 2019, 27, 409-421.	0.9	7
39	Numerical modelling of fractures induced by coal mining beneath reservoirs and aquifers in China. Quarterly Journal of Engineering Geology and Hydrogeology, 2013, 46, 237-244.	0.8	6
40	Flowing wells: terminology, history and role in the evolution of groundwater science. Hydrology and Earth System Sciences, 2020, 24, 6001-6019.	1.9	6
41	A study on coal mining under large reservoir areas. Environmental Geology, 2009, 57, 675-683.	1.2	5
42	The Exact Groundwater Divide on Water Table between Two Rivers: A Fundamental Model Investigation. Water (Switzerland), 2019, 11, 685.	1.2	5
43	Revisiting hydraulics of flowing artesian wells: A perspective from basinal groundwater hydraulics. Journal of Hydrology, 2022, 609, 127714.	2.3	3
44	Permeability Heterogeneity in a Fractured Sandstone–Mudstone Rock Mass in Xiaolangdi Dam Site, Central China. Acta Geologica Sinica, 2009, 83, 962-970.	0.8	2