
Mikyung Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6219234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Free Catecholamine in Thiol-Ene Crosslinking for Hyaluronic Acid Hydrogels with High Loading Efficiency of Anticancer Drugs. Tissue Engineering and Regenerative Medicine, 2022, 19, 281-287.	3.7	5
2	Polyphenol-modified nanovesicles for synergistically enhanced <i>in vitro</i> tumor cell targeting and apoptosis. Journal of Materials Chemistry B, 2022, 10, 1561-1570.	5.8	2
3	Molecular Rationale for the Design of Instantaneous, Strain-Tolerant Polymeric Adhesive in a Stretchable Underwater Human–Machine Interface. ACS Nano, 2022, 16, 1368-1380.	14.6	19
4	Antigen–Antibody Interactionâ€Derived Bioadhesion of Bacterial Cellulose Nanofibers to Promote Topical Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	17
5	Soft Stretchable Conductive Carboxymethylcellulose Hydrogels for Wearable Sensors. Gels, 2022, 8, 92.	4.5	12
6	Optically Anisotropic Topical Hemostatic Coacervate for Nakedâ€Eye Identification of Blood Coagulation. Advanced Functional Materials, 2022, 32, .	14.9	17
7	Addressing the Shortcomings of Polyphenol-Derived Adhesives: Achievement of Long Shelf Life for Effective Hemostasis. ACS Applied Materials & Interfaces, 2022, 14, 25115-25125.	8.0	18
8	Tissue Adhesive, Conductive, and Injectable Cellulose Hydrogel Ink for On-Skin Direct Writing of Electronics. Gels, 2022, 8, 336.	4.5	16
9	Plant-inspired Pluronic–gallol micelles with low critical micelle concentration, high colloidal stability, and protein affinity. Biomaterials Science, 2022, 10, 3739-3746.	5.4	9
10	Hemostatic Needles: Controlling Hemostasis Time by a Catecholamine Oxidative Pathway. ACS Applied Materials & Interfaces, 2021, 13, 10741-10747.	8.0	17
11	Designing Adaptive Binders for Microenvironment Settings of Silicon Anode Particles. Advanced Materials, 2021, 33, e2007460.	21.0	46
12	Mechanical Stabilization of Alginate Hydrogel Fiber and 3D Constructs by Mussel-Inspired Catechol Modification. Polymers, 2021, 13, 892.	4.5	13
13	Durable and Fatigueâ€Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling. Advanced Materials, 2021, 33, e2007346.	21.0	37
14	Self-Healing, Stretchable, Biocompatible, and Conductive Alginate Hydrogels through Dynamic Covalent Bonds for Implantable Electronics. Polymers, 2021, 13, 1133.	4.5	30
15	Neuroprosthetics: Durable and Fatigueâ€Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170157.	21.0	1
16	Fabrication of cell penetrating peptide-conjugated bacterial cellulose nanofibrils with remarkable skin adhesion and water retention performance. International Journal of Pharmaceutics, 2021, 600, 120476.	5.2	15
17	A Soft Pressure Sensor Array Based on a Conducting Nanomembrane. Micromachines, 2021, 12, 933.	2.9	4
18	Phenol–Hyaluronic Acid Conjugates: Correlation of Oxidative Crosslinking Pathway and Adhesiveness. Polymers, 2021, 13, 3130.	4.5	9

Mikyung Shin

#	Article	IF	CITATIONS
19	Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures. Polymers, 2021, 13, 3272.	4.5	12
20	Editorial: Special Issue on Advanced Biomedical Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 3993-3996.	5.2	3
21	Sundew-Inspired Adhesive Hydrogel Threads through Reversible Complexation of Polyphenol and Boronic Acid. Applied Sciences (Switzerland), 2021, 11, 8591.	2.5	2
22	Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics. RSC Advances, 2021, 11, 22327-22333.	3.6	10
23	Lead-Sealed Stretchable Underwater Perovskite-Based Optoelectronics <i>via</i> Self-Recovering Polymeric Nanomaterials. ACS Nano, 2021, 15, 20127-20135.	14.6	8
24	Alginateâ€Boronic Acid: pHâ€Triggered Bioinspired Glue for Hydrogel Assembly. Advanced Functional Materials, 2020, 30, 1908497.	14.9	52
25	Diatom Frustule Silica Exhibits Superhydrophilicity and Superhemophilicity. ACS Nano, 2020, 14, 4755-4766.	14.6	52
26	Catechology: The Study of Mussel- and Insect-inspired Adhesion, Coating, and Chemoselective Reaction. , 2020, , 261-288.		0
27	Plantâ€Inspired Pyrogallolâ€Containing Functional Materials. Advanced Functional Materials, 2019, 29, 1903022.	14.9	132
28	Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support. Advanced Science, 2019, 6, 1901229.	11.2	118
29	Safety and efficacy evaluations of an adeno-associated virus variant for preparing IL10-secreting human neural stem cell-based therapeutics. Gene Therapy, 2019, 26, 135-150.	4.5	5
30	Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Acta Biomaterialia, 2019, 95, 165-175.	8.3	84
31	A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing. NPG Asia Materials, 2018, 10, 82-89.	7.9	61
32	Chitosan-catechol: a writable bioink under serum culture media. Biomaterials Science, 2018, 6, 1040-1047.	5.4	63
33	Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nature Biomedical Engineering, 2018, 2, 304-317.	22.5	202
34	Dynamic Bonds between Boronic Acid and Alginate: Hydrogels with Stretchable, Self-Healing, Stimuli-Responsive, Remoldable, and Adhesive Properties. Biomacromolecules, 2018, 19, 2053-2061.	5.4	143
35	Hemostatic Swabs Containing Polydopamine-like Catecholamine Chitosan-Catechol for Normal and Coagulopathic Animal Models. ACS Biomaterials Science and Engineering, 2018, 4, 2314-2318.	5.2	55
36	Gallol-Rich Hyaluronic Acid Hydrogels: Shear-Thinning, Protein Accumulation against Concentration Gradients, and Degradation-Resistant Properties. Chemistry of Materials, 2017, 29, 8211-8220.	6.7	70

Mikyung Shin

#	Article	IF	CITATIONS
37	Phenolic condensation and facilitation of fluorescent carbon dot formation: a mechanism study. Nanoscale, 2017, 9, 16596-16601.	5.6	32
38	Complete prevention of blood loss with self-sealing haemostatic needles. Nature Materials, 2017, 16, 147-152.	27.5	228
39	Tannic Acid as a Degradable Mucoadhesive Compound. ACS Biomaterials Science and Engineering, 2016, 2, 687-696.	5.2	118
40	STAPLE: Stable Alginate Gel Prepared by Linkage Exchange from Ionic to Covalent Bonds. Advanced Healthcare Materials, 2016, 5, 75-79.	7.6	54
41	SpONGE: Spontaneous Organization of Numerousâ€Layer Generation by Electrospray. Angewandte Chemie - International Edition, 2015, 54, 7587-7591.	13.8	33
42	DNA/Tannic Acid Hybrid Gel Exhibiting Biodegradability, Extensibility, Tissue Adhesiveness, and Hemostatic Ability. Advanced Functional Materials, 2015, 25, 1270-1278.	14.9	266
43	TAPE: A Medical Adhesive Inspired by a Ubiquitous Compound in Plants. Advanced Functional Materials, 2015, 25, 2402-2410.	14.9	231
44	The Promotion of Human Neural Stem Cells Adhesion Using Bioinspired Poly(norepinephrine) Nanoscale Coating. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	12
45	Dopamineâ€loaded poly(<scp>d</scp> , <scp>l</scp> â€lacticâ€ <i>co</i> â€glycolic acid) microspheres: New strategy for encapsulating small hydrophilic drugs with high efficiency. Biotechnology Progress, 2014, 30, 215-223.	2.6	33