
Gary J Loake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6218943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide regulation of plant metabolism. Molecular Plant, 2022, 15, 228-242.	8.3	61
2	Nitric oxideâ€releasing nanomaterials: from basic research to potential biotechnological applications in agriculture. New Phytologist, 2022, 234, 1119-1125.	7.3	21
3	Feedback loop promotes sucrose accumulation in cotyledons to facilitate sugar-ethylene signaling-mediated, etiolated-seedling greening. Cell Reports, 2022, 38, 110529.	6.4	5
4	In situ solid-liquid extraction enhances recovery of taxadiene from engineered Saccharomyces cerevisiae cell factories. Separation and Purification Technology, 2022, 290, 120880.	7.9	10
5	Detection of Nitric Oxide from Chickpea Using DAF Fluorescence and Chemiluminescence Methods. Current Protocols, 2022, 2, e420.	2.9	3
6	Recent advances in the regulation of plant immunity by <i>S</i> -nitrosylation. Journal of Experimental Botany, 2021, 72, 864-872.	4.8	19
7	The <i>Arabidopsis</i> zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide. New Phytologist, 2021, 230, 259-274.	7.3	12
8	The role of nitric oxide in plant biology: current insights and future perspectives. Journal of Experimental Botany, 2021, 72, 777-780.	4.8	20
9	A Novel DUF569 Gene Is a Positive Regulator of the Drought Stress Response in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 5316.	4.1	15
10	Perturbations in nitric oxide homeostasis promote <i>Arabidopsis</i> disease susceptibility towards <i>Phytophthora parasitica</i> . Molecular Plant Pathology, 2021, 22, 1134-1148.	4.2	9
11	Glucose- and sucrose-signaling modules regulate the Arabidopsis juvenile-to-adult phase transition. Cell Reports, 2021, 36, 109348.	6.4	20
12	Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytologist, 2020, 225, 1828-1834.	7.3	56
13	<i>Ceratocystis fimbriata</i> Employs a Unique Infection Strategy Targeting Peltate Glandular Trichomes of Sweetpotato (<i>Ipomoea batatas</i>) Plants. Phytopathology, 2020, 110, 1923-1933.	2.2	13
14	Cytosolic Invertase-Mediated Root Growth Is Feedback Regulated by a Glucose-Dependent Signaling Loop. Plant Physiology, 2020, 184, 895-908.	4.8	20
15	The immuneâ€related, TGA1 redoxâ€switch: to be or not to be?. New Phytologist, 2020, , .	7.3	4
16	Regulating the regulator: nitric oxide control of postâ€ŧranslational modifications. New Phytologist, 2020, 227, 1319-1325.	7.3	91
17	A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17090-17095.	7.1	35
18	The PHYTOGLOBIN-NO Cycle Regulates Plant Mycorrhizal Symbiosis. Trends in Plant Science, 2019, 24, 981-983.	8.8	7

Gary J Loake

#	Article	IF	CITATIONS
19	Effects of various feedstocks on isotope fractionation of biogas and microbial community structure during anaerobic digestion. Waste Management, 2019, 84, 211-219.	7.4	45
20	Novel and conserved functions of S-nitrosoglutathione reductase in tomato. Journal of Experimental Botany, 2019, 70, 4877-4886.	4.8	39
21	Nitric oxide accelerates germination via the regulation of respiration in chickpea. Journal of Experimental Botany, 2019, 70, 4539-4555.	4.8	43
22	Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics. Environmental Science and Pollution Research, 2019, 26, 13275-13285.	5.3	8
23	Sulfur: the heart of nitric oxide-dependent redox signalling. Journal of Experimental Botany, 2019, 70, 4279-4286.	4.8	11
24	Differential expression of <i>AtWAKL10</i> in response to nitric oxide suggests a putative role in biotic and abiotic stress responses. PeerJ, 2019, 7, e7383.	2.0	21
25	Nitric Oxide Analyzer Quantification of Plant S-Nitrosothiols. Methods in Molecular Biology, 2018, 1747, 223-230.	0.9	Ο
26	Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Scientific Reports, 2018, 8, 771.	3.3	57
27	Redox regulation of pyruvate kinase M2 by cysteine oxidation and S-nitrosation. Biochemical Journal, 2018, 475, 3275-3291.	3.7	24
28	S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity. Nature Communications, 2018, 9, 4226.	12.8	78
29	Specificity in nitric oxide signalling. Journal of Experimental Botany, 2018, 69, 3439-3448.	4.8	53
30	Nitric oxide function in plant abiotic stress. Plant, Cell and Environment, 2017, 40, 462-472.	5.7	360
31	Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8414-8419.	7.1	104
32	Plant cell culture strategies for the production of natural products. BMB Reports, 2016, 49, 149-158.	2.4	237
33	Seed Embryo Development Is Regulated via an AN3-MINI3 Gene Cascade. Frontiers in Plant Science, 2016, 7, 1645.	3.6	26
34	<i><scp>RTP</scp>1</i> encodes a novel endoplasmic reticulum (<scp>ER</scp>)â€localized protein in <i>Arabidopsis</i> and negatively regulates resistance against biotrophic pathogens. New Phytologist, 2016, 209, 1641-1654.	7.3	39
35	Nitric oxide and <i>S</i> â€nitrosoglutathione function additively during plant immunity. New Phytologist, 2016, 211, 516-526.	7.3	117
36	Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase. Scientific Reports, 2016, 6, 37601.	3.3	14

GARY J LOAKE

#	Article	IF	CITATIONS
37	Identification of S-Nitrosothiols by the Sequential Cysteine Blocking Technique. Methods in Molecular Biology, 2016, 1424, 163-174.	0.9	0
38	Redox-Regulated Plant Transcription Factors. , 2016, , 373-384.		6
39	Cambial meristematic cells: a platform for the production of plant natural products. New Biotechnology, 2015, 32, 581-587.	4.4	38
40	S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nature Communications, 2014, 5, 5401.	12.8	199
41	Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytologist, 2014, 202, 1142-1156.	7.3	415
42	Paclitaxel: biosynthesis, production and future prospects. New Biotechnology, 2014, 31, 242-245.	4.4	151
43	Selective Protein Denitrosylation Activity of Thioredoxin-h5 Modulates Plant Immunity. Molecular Cell, 2014, 56, 153-162.	9.7	169
44	Redox Regulation in Plant Immune Function. Antioxidants and Redox Signaling, 2014, 21, 1373-1388.	5.4	129
45	Identification of a drought-induced rice gene, OsSAP, that suppresses Bax-induced cell death in yeast. Molecular Biology Reports, 2013, 40, 6113-6121.	2.3	9
46	H ₂ O ₂ â€induced Leaf Cell Death and the Crosstalk of Reactive Nitric/Oxygen Species ^F . Journal of Integrative Plant Biology, 2013, 55, 202-208.	8.5	74
47	Synthesis of Redox-Active Molecules and Their Signaling Functions During the Expression of Plant Disease Resistance. Antioxidants and Redox Signaling, 2013, 19, 990-997.	5.4	34
48	Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Frontiers in Plant Science, 2013, 4, 314.	3.6	183
49	Nitric Oxide and Protein <i>S</i> -Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice Â. Plant Physiology, 2012, 158, 451-464.	4.8	290
50	AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta, 2012, 236, 887-900.	3.2	152
51	Synthesis of and signalling by small, redox active molecules in the plant immune response. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 770-776.	2.4	34
52	A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. Current Opinion in Plant Biology, 2012, 15, 424-430.	7.1	84
53	Plant natural products: history, limitations and the potential of cambial meristematic cells. Biotechnology and Genetic Engineering Reviews, 2012, 28, 47-60.	6.2	36
54	Cauliflower mosaic virus Protein P6 Inhibits Signaling Responses to Salicylic Acid and Regulates Innate Immunity. PLoS ONE, 2012, 7, e47535.	2.5	109

GARY J LOAKE

#	Article	IF	CITATIONS
55	Transcription Dynamics in Plant Immunity. Plant Cell, 2011, 23, 2809-2820.	6.6	221
56	S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature, 2011, 478, 264-268.	27.8	596
57	GSNOR-mediated de-nitrosylation in the plant defence response. Plant Science, 2011, 181, 540-544.	3.6	123
58	ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytologist, 2011, 192, 471-482.	7.3	62
59	Redox-based protein modifications: the missing link in plant immune signalling. Current Opinion in Plant Biology, 2011, 14, 358-364.	7.1	160
60	Nitric oxide: promoter or suppressor of programmed cell death?. Protein and Cell, 2010, 1, 133-142.	11.0	49
61	Postâ€ŧranslational protein modification as a tool for transcription reprogramming. New Phytologist, 2010, 186, 333-339.	7.3	55
62	Cultured cambial meristematic cells as a source of plant natural products. Nature Biotechnology, 2010, 28, 1213-1217.	17.5	158
63	The redox switch: dynamic regulation of protein function by cysteine modifications. Physiologia Plantarum, 2010, 138, 360-371.	5.2	178
64	Functional redundancy in the <i>Arabidopsis Cathepsin B</i> gene family contributes to basal defence, the hypersensitive response and senescence. New Phytologist, 2009, 183, 408-418.	7.3	99
65	Activation tagging of <i>ADR2</i> conveys a spreading lesion phenotype and resistance to biotrophic pathogens. New Phytologist, 2009, 183, 1163-1175.	7.3	23
66	S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity. Journal of Biological Chemistry, 2009, 284, 2131-2137.	3.4	227
67	Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytologist, 2008, 180, 124-132.	7.3	166
68	Differential profiling of selected defenceâ€related genes induced on challenge with <i>Alternaria brassicicola</i> in resistant white mustard and their comparative expression pattern in susceptible India mustard. Molecular Plant Pathology, 2008, 9, 763-775.	4.2	29
69	Nitric oxide function and signalling in plant disease resistance. Journal of Experimental Botany, 2008, 59, 147-154.	4.8	154
70	Arabidopsis Mitogen-Activated Protein Kinase Kinases MKK1 and MKK2 Have Overlapping Functions in Defense Signaling Mediated by MEKK1, MPK4, and MKS1. Plant Physiology, 2008, 148, 212-222.	4.8	266
71	The developmental selector <i>AS1</i> is an evolutionarily conserved regulator of the plant immune response. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18795-18800.	7.1	74
72	Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant Journal, 2007, 52, 1-13.	5.7	147

Gary J Loake

#	Article	IF	CITATIONS
73	Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Molecular Plant Pathology, 2007, 8, 773-784.	4.2	58
74	Salicylic acid in plant defence—the players and protagonists. Current Opinion in Plant Biology, 2007, 10, 466-472.	7.1	688
75	S-Nitrosylation: an emerging redox-based post-translational modification in plants. Journal of Experimental Botany, 2006, 57, 1777-1784.	4.8	118
76	A constitutivePR-1::luciferaseexpression screen identifies Arabidopsis mutants with differential disease resistance to both biotrophic and necrotrophic pathogens. Molecular Plant Pathology, 2005, 6, 31-41.	4.2	8
77	Motifs specific for the ADR1 NBS–LRR protein family in Arabidopsis are conserved among NBS–LRR sequences from both dicotyledonous and monocotyledonous plants. Planta, 2005, 221, 597-601.	3.2	21
78	Cauliflower mosaic virus, a Compatible Pathogen of Arabidopsis, Engages Three Distinct Defense-Signaling Pathways and Activates Rapid Systemic Generation of Reactive Oxygen Species. Plant Physiology, 2005, 139, 935-948.	4.8	178
79	A central role for S-nitrosothiols in plant disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8054-8059.	7.1	511
80	Potato Virus X-Induced Gene Silencing in Leaves and Tubers of Potato. Plant Physiology, 2004, 134, 1308-1316.	4.8	160
81	Drought tolerance established by enhanced expression of theCC-NBS-LRRgene,ADR1, requires salicylic acid, EDS1 and ABI1. Plant Journal, 2004, 38, 810-822.	5.7	253
82	Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Molecular Plant Pathology, 2004, 5, 45-56.	4.2	50
83	Activation tagging in plants: a tool for gene discovery. Functional and Integrative Genomics, 2004, 4, 258-66.	3.5	59
84	Transformation of Fusarium oxysporum by particle bombardment and characterisation of the resulting transformants expressing a GFP transgene. Mycopathologia, 2004, 158, 475-482.	3.1	21
85	Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance inArabidopsisagainst wheat powdery mildew. Plant Journal, 2003, 34, 768-777.	5.7	161
86	Targeted Activation Tagging of the Arabidopsis NBS-LRR gene, ADR1, Conveys Resistance to Virulent Pathogens. Molecular Plant-Microbe Interactions, 2003, 16, 669-680.	2.6	140
87	Characterization of a Novel, Defense-Related Arabidopsis Mutant, cir1, Isolated By Luciferase Imaging. Molecular Plant-Microbe Interactions, 2002, 15, 557-566.	2.6	49
88	The promoter of a basic PR1-like gene, AtPRB1, from Arabidopsis establishes an organ-specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Molecular Biology, 2001, 47, 641-652.	3.9	53
89	Plant cell death: Unmasking the gatekeepers. Current Biology, 2001, 11, R1028-R1031.	3.9	17
90	IDENTIFICATION OF T-DNA ACTIVATION TAGGED SYSTEMIC ACQUIRED RESISTANCE MUTANTS IN ARABIDOPSIS BY LUCIFERASE IMAGING, Biochemical Society Transactions, 2000, 28, A209-A209	3.4	0

GARY J LOAKE

#	Article	IF	CITATIONS
91	Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant Journal, 2000, 24, 569-582.	5.7	231
92	Role of Reactive Oxygen Intermediates and Cognate Redox Signaling in Disease Resistance. Plant Physiology, 2000, 124, 21-30.	4.8	627
93	Differential utilization of regulatory cis-elements for stress-induced and tissue-specific activity of a French bean chalcone synthase promoter. Plant Science, 1997, 124, 175-182.	3.6	20
94	The G-box and H-box in a 39 bp region of a French bean chalcone synthase promoter constitute a tissue-specific regulatory element. Plant Journal, 1997, 11, 1105-1113.	5.7	47