Marc Solioz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6218836/publications.pdf

Version: 2024-02-01

		76196	58464
116	7,177	40	82
papers	citations	h-index	g-index
118	118	118	6929
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Low copper-2 intake in Switzerland does not result in lower incidence of Alzheimer's disease and contradicts the Copper-2 Hypothesis. Experimental Biology and Medicine, 2020, 245, 177-179.	1.1	5
2	Copper Disposition in Bacteria., 2019, , 101-113.		4
3	Copper and Bacteria. Springer Briefs in Molecular Science, 2018, , .	0.1	34
4	Copper—A Modern Bioelement. Springer Briefs in Molecular Science, 2018, , 1-9.	0.1	O
5	Copper Toxicity. Springer Briefs in Molecular Science, 2018, , 11-19.	0.1	4
6	Copper Homeostasis in Gram-Negative Bacteria. Springer Briefs in Molecular Science, 2018, , 49-80.	0.1	8
7	Copper Homeostasis in Gram-Positive Bacteria. Springer Briefs in Molecular Science, 2018, , 21-48.	0.1	1
8	Xenon-inhibition of the MscL mechano-sensitive channel and the CopB copper ATPase under different conditions suggests direct effects on these proteins. PLoS ONE, 2018, 13, e0198110.	1.1	8
9	Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters. Biointerphases, 2017, 12, 020301.	0.6	46
10	Dipolar Relaxation Dynamics at the Active Site of an ATPase Regulated by Membrane Lateral Pressure. Angewandte Chemie, 2017, 129, 1289-1292.	1.6	3
11	Dipolar Relaxation Dynamics at the Active Site of an ATPase Regulated by Membrane Lateral Pressure. Angewandte Chemie - International Edition, 2017, 56, 1269-1272.	7.2	15
12	Desulfovibrio DA2_CueO is a novel multicopper oxidase with cuprous, ferrous and phenol oxidase activity. Microbiology (United Kingdom), 2017, 163, 1229-1236.	0.7	6
13	Copper Oxidation State and Mycobacterial Infection. Mycobacterial Diseases: Tuberculosis & Leprosy, 2016, 6, .	0.1	8
14	Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases, 2016, 11, 018902.	0.6	92
15	Mechanism of Attenuation of Uranyl Toxicity by Glutathione in Lactococcus lactis. Applied and Environmental Microbiology, 2016, 82, 3563-3571.	1.4	15
16	Treatment by serum up-conversion nanoparticles in the fluoride matrix changes the mechanism of cell death and the elasticity of the membrane. Micron, 2016, 90, 23-32.	1.1	8
17	The copper rush of the nineties. Metallomics, 2016, 8, 824-830.	1.0	6
18	Copper resistance and its regulation in the sulfate-reducing bacterium Desulfosporosinus sp. OT. Microbiology (United Kingdom), 2016, 162, 684-693.	0.7	6

#	Article	IF	Citations
19	Effect of Tree Species on Enzyme Secretion by the Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes). International Journal of Medicinal Mushrooms, 2016, 18, 637-644.	0.9	2
20	Copper Reduction and Contact Killing of Bacteria by Iron Surfaces. Applied and Environmental Microbiology, 2015, 81, 6399-6403.	1.4	54
21	A copperâ€induced quinone degradation pathway provides protection against combined copper/quinone stress in <scp><i>L</i></scp> <i>actococcus lactis</i> â€ <scp>IL</scp> 1403. Molecular Microbiology, 2015, 95, 645-659.	1.2	16
22	Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes. Biotechnology Letters, 2014, 36, 2283-2289.	1.1	7
23	Surface structure influences contact killing of bacteria by copper. MicrobiologyOpen, 2014, 3, 327-332.	1.2	31
24	Evaluation of chocolate as a source of dietary copper. European Food Research and Technology, 2014, 238, 1063-1066.	1.6	6
25	Laser cladding of stainless steel with a copper–silver alloy to generate surfaces of high antimicrobial activity. Applied Surface Science, 2014, 320, 195-199.	3.1	48
26	Role of Copper Oxides in Contact Killing of Bacteria. Langmuir, 2013, 29, 16160-16166.	1.6	277
27	Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions. Applied and Environmental Microbiology, 2013, 79, 2605-2611.	1.4	142
28	Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiology (United Kingdom), 2013, 159, 1190-1197.	0.7	41
29	Genome Sequence of Enterococcus hirae (Streptococcus faecalis) ATCC 9790, a Model Organism for the Study of Ion Transport, Bioenergetics, and Copper Homeostasis. Journal of Bacteriology, 2012, 194, 5126-5127.	1.0	14
30	<i>Lactococcus lactis</i> HemW (HemN) is a haem-binding protein with a putative role in haem trafficking. Biochemical Journal, 2012, 442, 335-343.	1.7	27
31	The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. BioMetals, 2012, 25, 33-43.	1.8	53
32	Metallic Copper as an Antimicrobial Surface. Applied and Environmental Microbiology, 2011, 77, 1541-1547.	1.4	1,205
33	Regulation and structure of YahD, a copper-inducible $\hat{l}\pm/\hat{l}^2$ serine hydrolase of Lactococcus lactis IL1403. FEMS Microbiology Letters, 2011, 314, 57-66.	0.7	5
34	Genome Sequence of Desulfosporosinus sp. OT, an Acidophilic Sulfate-Reducing Bacterium from Copper Mining Waste in Norilsk, Northern Siberia. Journal of Bacteriology, 2011, 193, 6104-6105.	1.0	33
35	Responses of Lactic Acid Bacteria to Heavy Metal Stress. , 2011, , 163-195.		13
36	Genome Sequence of Desulfovibrio sp. A2, a Highly Copper Resistant, Sulfate-Reducing Bacterium Isolated from Effluents of a Zinc Smelter at the Urals. Journal of Bacteriology, 2011, 193, 6793-6794.	1.0	14

#	Article	IF	Citations
37	Response of Gram-positive bacteria to copper stress. Journal of Biological Inorganic Chemistry, 2010, 15, 3-14.	1.1	183
38	The stress response protein Gls24 is induced by copper and interacts with the CopZ copper chaperone ofEnterococcus hirae. FEMS Microbiology Letters, 2010, 302, 69-75.	0.7	10
39	Structure and Function of CinD (YtjD) of <i>Lactococcus lactis</i> , a Copper-Induced Nitroreductase Involved in Defense against Oxidative Stress. Journal of Bacteriology, 2010, 192, 4172-4180.	1.0	30
40	A Role for Low Hepatic Copper Concentrations in Nonalcoholic Fatty Liver Disease. American Journal of Gastroenterology, 2010, 105, 1978-1985.	0.2	164
41	Killing of Bacteria by Copper Surfaces Involves Dissolved Copper. Applied and Environmental Microbiology, 2010, 76, 4099-4101.	1.4	142
42	Letter to the Editor and Reply: Toxicity of Copper in Drinking Water. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 449-459.	2.9	16
43	Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. BioMetals, 2009, 22, 363-375.	1.8	25
44	The copper-responsive repressor CopR of Lactococcus lactis is a â€~winged helix' protein. Biochemical Journal, 2009, 417, 493-499.	1.7	21
45	Characterization of the CopR Regulon of <i>Lactococcus lactis</i> IL1403. Journal of Bacteriology, 2008, 190, 536-545.	1.0	71
46	How reliable and robust are current biomarkers for copper status? $\hat{a} \in \text{``reply by Danzeisen et al British Journal of Nutrition, 2008, 100, 1343-1344.}$	1.2	2
47	Copper Induction of Lactate Oxidase of Lactococcus lactis : a Novel Metal Stress Response. Journal of Bacteriology, 2007, 189, 5947-5954.	1.0	38
48	How Bacteria Handle Copper., 2007,, 259-285.		41
49	How reliable and robust are current biomarkers for copper status?. British Journal of Nutrition, 2007, 98, 676-83.	1.2	91
50	Copper and Human Health: Biochemistry, Genetics, and Strategies for Modeling Dose-response Relationships. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2007, 10, 157-222.	2.9	276
51	Efficient transformation of Lactococcus lactis IL1403 and generation of knock-out mutants by homologous recombination. Journal of Basic Microbiology, 2007, 47, 281-286.	1.8	24
52	Improved protocol for chromatofocusing on the ProteomeLab PF2D. Proteomics, 2006, 6, 5096-5098.	1.3	19
53	CopY-like Copper Inducible Repressors are Putative â€~Winged Helix' Proteins. BioMetals, 2006, 19, 61-70.	1.8	51
54	Whole animal copper flux assessed by positron emission tomography in the Long $\hat{a} \in \text{``Evans cinnamon rat } \hat{a} \in \text{``a feasibility study. BioMetals, 2005, 18, 83-88.}$	1.8	15

#	Article	IF	Citations
55	Copper Chaperone Cycling and Degradation in the Regulation of theCop Operon of Enterococcus Hirae. BioMetals, 2005, 18, 407-412.	1.8	39
56	ATP-driven copper transport across the intestinal brush border membrane. Biochemical and Biophysical Research Communications, 2005, 330, 645-652.	1.0	34
57	Purification and functional reconstitution of the human Wilson copper ATPase, ATP7B. FEBS Letters, 2005, 579, 3589-3595.	1.3	11
58	Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae. Journal of Biological Inorganic Chemistry, 2004, 9, 396-402.	1.1	41
59	The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. BioMetals, 2003, 16, 137-143.	1.8	38
60	Copper and silver homeostasis by Escherichia coli assessed with a biosensor. Journal of Inorganic Biochemistry, 2003, 96, 235.	1.5	0
61	Copper homeostasis inEnterococcus hirae. FEMS Microbiology Reviews, 2003, 27, 183-195.	3.9	273
62	Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Letters, 2003, 546, 391-394.	1.3	66
63	Betaine homocysteine methyltransferase: gene cloning and expression analysis in rat liver cirrhosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1638, 29-34.	1.8	19
64	Disorders of Copper, Zinc and Iron Metabolism. , 2003, , 631-658.		3
65	Characterization of a Cytochrome b558 Ferric/Cupric Reductase from Rabbit Duodenal Brush Border Membranes. Biochemical and Biophysical Research Communications, 2002, 291, 220-225.	1.0	49
66	Copper Transfer from the Cu(I) Chaperone, CopZ, to the Repressor, Zn(II)CopY: Metal Coordination Environments and Protein Interactionsâ€. Biochemistry, 2002, 41, 5822-5829.	1.2	116
67	Bacterial copper transport. Advances in Protein Chemistry, 2002, 60, 93-121.	4.4	22
68	Overexpression of Bax sensitizes human pancreatic cancer cells to apoptosis induced by chemotherapeutic agents. Cancer Chemotherapy and Pharmacology, 2002, 49, 504-510.	1.1	66
69	Purification and Functional Analysis of the Copper ATPase CopA of Enterococcus hirae. Biochemical and Biophysical Research Communications, 2001, 280, 713-719.	1.0	44
70	Interaction of the CopZ Copper Chaperone with the CopA Copper ATPase of Enterococcus hirae Assessed by Surface Plasmon Resonance. Biochemical and Biophysical Research Communications, 2001, 288, 172-177.	1.0	61
71	Tetrathiomolybdate inhibition of theEnterococcus hiraeCopB copper ATPase. FEBS Letters, 2001, 507, 367-370.	1.3	34
72	Structureâ€'function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochemical Journal, 2001, 357, 217.	1.7	39

#	Article	IF	CITATIONS
73	Structure–function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochemical Journal, 2001, 357, 217-223.	1.7	58
74	Copper-induced Proteolysis of the CopZ Copper Chaperone of Enterococcus hirae. Journal of Biological Chemistry, 2001, 276, 47822-47827.	1.6	37
75	Development and characterization of an animal model of carnitine deficiency. FEBS Journal, 2001, 268, 1876-1887.	0.2	82
76	Bcl-xl antisense oligonucleotides induce apoptosis and increase sensitivity of pancreatic cancer cells to gemcitabine. International Journal of Cancer, 2001, 94, 268-274.	2.3	60
77	Expression of the Human Menkes ATPase in Xenopus laevis Oocytes. Biological Chemistry, 2001, 382, 711-4.	1.2	7
78	Development and characterization of an animal model of carnitine deficiency. FEBS Journal, 2001, 268, 1876-1887.	0.2	0
79	Intracellular copper routing: the role of copper chaperones. Trends in Biochemical Sciences, 2000, 25, 29-32.	3.7	234
80	Epidermal growth factor is decreased in liver of rats with biliary cirrhosis but does not act as paracrine growth factor immediately after hepatectomy. Journal of Hepatology, 2000, 33, 275-281.	1.8	13
81	NMR Structure and Metal Interactions of the CopZ Copper Chaperone. Journal of Biological Chemistry, 1999, 274, 22597-22603.	1.6	116
82	How cells handle copper: A view from microbes. Journal of Trace Elements in Experimental Medicine, 1999, 12, 347-360.	0.8	16
83	TheEnterococcus hiraecopper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Letters, 1999, 445, 27-30.	1.3	145
84	Effects of Promoter Mutations on the in Vivo Regulation of the cop Operon of Enterococcus hirae by Copper(I) and Copper(II). Biochemical and Biophysical Research Communications, 1999, 259, 443-449.	1.0	24
85	Copper Homeostasis in Enterococcus hirae. Advances in Experimental Medicine and Biology, 1999, 448, 255-264.	0.8	32
86	NapA Na+/H+Antiporter as a Sodium Extrusion System Supplementary to the Vacuolar Na+-ATPase inEnterococcus hirae. Bioscience, Biotechnology and Biochemistry, 1998, 62, 2371-2374.	0.6	5
87	CopY Is a Copper-inducible Repressor of the Enterococcus hirae Copper ATPases. Journal of Biological Chemistry, 1997, 272, 8932-8936.	1.6	96
88	Topical application of synthetic pyrethroids to cattle as a source of persistent environmental contamination. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 1997, 32, 729-739.	0.7	32
89	Copper Homeostasis by Cpx-Type ATPases. Advances in Molecular and Cell Biology, 1997, , 167-203.	0.1	4
90	Acylphosphate formation by the Menkes copper ATPase. FEBS Letters, 1997, 412, 165-168.	1.3	25

#	Article	IF	Citations
91	Hepatic mitochondrial proliferation in rats with secondary biliary cirrhosis: Time course and mechanisms. Hepatology, 1997, 26, 386-391.	3.6	14
92	Application of mRNA Differential Display to Liver Cirrhosis: Reduced Fetuin Expression in Biliary Cirrhosis in the Rat. Biochemical and Biophysical Research Communications, 1996, 225, 377-383.	1.0	8
93	Fixed versus titrated interferon-α2B in chronic hepatitis C. A randomized controlled multicenter trial. Journal of Hepatology, 1996, 25, 275-282.	1.8	15
94	Phosphoenzyme formation by purified, reconstituted copper ATPase of Enterococcus hirae. FEBS Letters, 1996, 399, 143-146.	1.3	19
95	CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends in Biochemical Sciences, 1996, 21, 237-241.	3.7	445
96	Two trans-Acting Metalloregulatory Proteins Controlling Expression of the Copper-ATPases of Enterococcus hirae*. Journal of Biological Chemistry, 1995, 270, 4349-4354.	1.6	163
97	Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae. Journal of Biological Chemistry, 1995, 270, 9217-9221.	1.6	246
98	Copper pumping ATPases: Common concepts in bacteria and man. FEBS Letters, 1994, 346, 44-47.	1.3	103
99	Induction of the Putative Copper ATPases, CopA and Copb, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ Extrusion by CopB. Biochemical and Biophysical Research Communications, 1994, 202, 44-48.	1.0	105
100	An ATPase Operon Involved in Copper Resistance by Enterococcus hirae. Annals of the New York Academy of Sciences, 1992, 671, 484-486.	1.8	98
101	Assessment of uncoupling by amiloride analogs. Biochemistry, 1992, 31, 8055-8058.	1.2	20
102	Na/H antiporter mRNA expression in single nephron segments of rat kidney cortex Journal of Clinical Investigation, 1991, 88, 783-788.	3.9	56
103	Efficient electrotransformation of Enterococcus hirae with a new Enterococcus-Escherichia coli shuttle vector. Biochimie, 1990, 72, 279-283.	1.3	29
104	Bacterial genetics by electric shock. Trends in Biochemical Sciences, 1990, 15, 175-177.	3.7	19
105	Electrogenic transport by the Enterococcus hirae ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1017, 221-228.	0.5	11
106	A protein of unusual composition fromEnterococcus faecium. Nucleic Acids Research, 1989, 17, 6724-6724.	6.5	33
107	[53] Purification of the ATPase of Streptococcus faecalis. Methods in Enzymology, 1988, 157, 680-689.	0.4	4
108	Arginine modification with butanedione inhibits the potassium ATPase of Streptococcusfaecalis. Biochemical and Biophysical Research Communications, 1987, 142, 107-112.	1.0	3

#	Article	IF	CITATIONS
109	Dicyclohexylcarbodiimide as a probe for proton translocating enzymes. Trends in Biochemical Sciences, 1984, 9, 309-312.	3.7	101
110	Dicyclohexylcarbodiimide Does not Inhibit Proton Pumping by Cytochrome c Oxidase of Paracoccus denitrificans. FEBS Journal, 1983, 134, 33-37.	0.2	38
111	THE ATP-DEPENDENT Ca2+-PUMPING SYSTEM OF Streptococcus faecium. Annals of the New York Academy of Sciences, 1982, 402, 422-432.	1.8	12
112	The Mitochondrial COB Region in Yeast Codes for Apocytochrome b and Is Mosaic. FEBS Journal, 1979, 94, 451-464.	0.2	103
113	The gene transfer agent of Rhodopseudomonas capsulata,. Archives of Biochemistry and Biophysics, 1977, 181, 300-307.	1.4	104
114	Bacterial Copper Transport., 0,, 361-376.		3
115	Interaction of Copper-Binding Proteins from Enterococcus hirae. , 0, , 177-186.		3
116	Molecular Hardware of Copper Homeostasis in Enterococcus hirae., 0,, 527-542.		2