
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6218215/publications.pdf Version: 2024-02-01

<u> Βλαβρο ΠιÃΩ</u>Ν

#	Article	IF	CITATIONS
1	Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio, 2015, 44, 163-179.	5.5	210
2	Agriculture as a phosphorus source for eutrophication in the northâ€west European countries, Norway, Sweden, United Kingdom and Ireland: a review. Soil Use and Management, 2007, 23, 5-15.	4.9	197
3	Incidental phosphorus losses– are they significant and can they be predicted?. Journal of Plant Nutrition and Soil Science, 2003, 166, 459-468.	1.9	131
4	Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 2013, 49, 245-250.	4.3	126
5	Topsoil and Subsoil Properties Influence Phosphorus Leaching from Four Agricultural Soils. Journal of Environmental Quality, 2013, 42, 455-463.	2.0	103
6	Modelling particle mobilization and leaching in macroporous soil. European Journal of Soil Science, 1999, 50, 621-632.	3.9	101
7	Can Constructed Wetlands Reduce the Diffuse Phosphorus Loads to Eutrophic Water in Cold Temperate Regions?. Journal of Environmental Quality, 2005, 34, 2145-2155.	2.0	101
8	Soil tillage methods to control phosphorus loss and potential side-effects: a Scandinavian review. Soil Use and Management, 2010, 26, 94-107.	4.9	99
9	The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. Journal of Soils and Water Conservation, 2016, 71, 41-55.	1.6	93
10	Nutrient discharge from small agricultural catchments in Sweden. Agriculture, Ecosystems and Environment, 2006, 115, 15-26.	5.3	92
11	Mode of Transport of Surfaceâ€Applied Phosphorusâ€33 through a Clay and Sandy Soil. Journal of Environmental Quality, 1999, 28, 1273-1282.	2.0	82
12	Turnover and Losses of Phosphorus in Swedish Agricultural Soils: Long-Term Changes, Leaching Trends, and Mitigation Measures. Journal of Environmental Quality, 2015, 44, 512-523.	2.0	76
13	Review of indexing tools for identifying high risk areas of phosphorus loss in Nordic catchments. Journal of Hydrology, 2008, 349, 68-87.	5.4	61
14	Potential phosphorus leaching from sandy topsoils with different fertilizer histories before and after application of pig slurry. Soil Use and Management, 2012, 28, 457-467.	4.9	61
15	Potential phosphorus release from catch crop shoots and roots after freezing-thawing. Plant and Soil, 2013, 371, 543-557.	3.7	59
16	Field-scale phosphorus losses from a drained clay soil in Sweden. Hydrological Processes, 1999, 13, 2801-2812.	2.6	55
17	Nutrient losses by surface run-off from soils with winter cover crops and spring-ploughed soils in the south of Sweden. Soil and Tillage Research, 1997, 44, 165-177.	5.6	49
18	Temporal and spatial variations of phosphorus losses and drainage in a structured clay soil. Water Research, 2000, 34, 1687-1695.	11.3	49

#	Article	IF	CITATIONS
19	Phosphorus Retention in a Newly Constructed Wetland Receiving Agricultural Tile Drainage Water. Journal of Environmental Quality, 2013, 42, 596-605.	2.0	49
20	Phosphorus losses from a structured clay soil in relation to tillage practices. Soil Use and Management, 2002, 18, 79-83.	4.9	47
21	Evolution of phosphorus speciation with depth in an agricultural soil profile. Geoderma, 2016, 280, 29-37.	5.1	47
22	Critical evaluation of measures to mitigate phosphorus losses from agricultural land to surface waters in Sweden. Science of the Total Environment, 2005, 344, 37-50.	8.0	46
23	The Role of Subsoil as a Source or Sink for Phosphorus Leaching. Journal of Environmental Quality, 2015, 44, 535-544.	2.0	45
24	Freezing–thawing effects on phosphorus leaching from catch crops. Nutrient Cycling in Agroecosystems, 2014, 99, 17-30.	2.2	44
25	Pesticide leaching from two Swedish topsoils of contrasting texture amended with biochar. Journal of Contaminant Hydrology, 2013, 147, 73-81.	3.3	43
26	Mitigation of phosphorus leaching losses via subsurface drains from a cracking marine clay soil. Agriculture, Ecosystems and Environment, 2014, 184, 124-134.	5.3	41
27	Concentrations and transport of different forms of phosphorus during snowmelt runoff from an illite clay soil. Hydrological Processes, 2003, 17, 747-758.	2.6	40
28	Forms and retention of phosphorus in an illite-clay soil profile with a history of fertilisation with pig manure and mineral fertilisers. Geoderma, 2007, 137, 455-465.	5.1	39
29	Tile drain losses of nitrogen and phosphorus from fields under integrated and organic crop rotations. A four-year study on a clay soil in southwest Sweden. Science of the Total Environment, 2012, 434, 79-89.	8.0	39
30	A dual porosity model to quantify phosphorus losses from macroporous soils. Ecological Modelling, 2007, 205, 123-134.	2.5	38
31	A Decision Support System for Phosphorus Management at a Watershed Scale. Journal of Environmental Quality, 2002, 31, 937-945.	2.0	34
32	Leaching of N, P and glyphosate from two soils after herbicide treatment and incorporation of a ryegrass catch crop. Soil Use and Management, 2011, 27, 54-68.	4.9	34
33	Biomass production and phosphorus retention by catch crops on clayey soils in southern and central Sweden. Field Crops Research, 2015, 171, 130-137.	5.1	34
34	Phosphorus and particle retention in constructed wetlands—A catchment comparison. Ecological Engineering, 2015, 80, 20-31.	3.6	34
35	Size and Settling Velocities of Phosphorus-Containing Particles in Water from Agricultural Drains. Water, Air, and Soil Pollution, 2004, 157, 331-343.	2.4	33
36	Model predictions and long-term trends in phosphorus transport from arable lands in Sweden. Agricultural Water Management, 2001, 49, 197-210.	5.6	30

#	Article	IF	CITATIONS
37	Recent trends in nutrient concentrations in Swedish agricultural rivers. Science of the Total Environment, 2007, 373, 473-487.	8.0	28
38	Influence of soil phosphorus and manure on phosphorus leaching in Swedish topsoils. Nutrient Cycling in Agroecosystems, 2013, 96, 133-147.	2.2	27
39	Phosphorus in agricultural soils around the Baltic Sea – comparison of laboratory methods as indices for phosphorus leaching to waters. Soil Use and Management, 2013, 29, 5-14.	4.9	26
40	Losses of Nutrients through Leaching and Surface Runoff from Manure-Containing Composts. Biological Agriculture and Horticulture, 1993, 10, 29-37.	1.0	24
41	SIMULATION OF NITROGEN AND PHOSPHORUS LEACHING IN A STRUCTURED SOIL USING GLEAMS AND A NEW SUBMODEL, "PARTLE". Transactions of the American Society of Agricultural Engineers, 1998, 41, 353-360.	0.9	23
42	Hydrologic Extremes and Legacy Sources Can Override Efforts to Mitigate Nutrient and Sediment Losses at the Catchment Scale. Journal of Environmental Quality, 2019, 48, 1314-1324.	2.0	22
43	Transport of phosphorus forms and of nitrate through a clay soil under grass and cereal production. Nutrient Cycling in Agroecosystems, 2003, 65, 129-140.	2.2	20
44	A simplified risk assessment for losses of dissolved reactive phosphorus through drainage pipes from agricultural soils. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2006, 56, 307-314.	0.6	20
45	The need for an improved risk index for phosphorus losses to water from tile-drained agricultural land. Journal of Hydrology, 2011, 400, 234-243.	5.4	20
46	Phosphorus leaching from clay soils can be counteracted by structure liming. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2014, 64, 425-433.	0.6	20
47	Are horse paddocks threatening water quality through excess loading of nutrients?. Journal of Environmental Management, 2015, 147, 306-313.	7.8	19
48	Seasonal variation in nutrient retention in a free water surface constructed wetland monitored with flow-proportional sampling and optical sensors. Ecological Engineering, 2019, 139, 105588.	3.6	19
49	Sustainable agriculture: The study on farmers' perception and practices regarding nutrient management and limiting losses. Journal of Water and Land Development, 2018, 36, 67-75.	0.9	18
50	Effects of tillage and liming on macropore networks derived from Xâ€ray tomography images of a silty clay soil. Soil Use and Management, 2018, 34, 197-205.	4.9	18
51	Assessing the ability of soil tests to estimate labile phosphorus in agricultural soils: Evidence from isotopic exchange. Geoderma, 2019, 337, 350-358.	5.1	18
52	Particle deposition, resuspension and phosphorus accumulation in small constructed wetlands. Ambio, 2018, 47, 134-145.	5.5	17
53	Trends in nutrient concentrations in drainage water from single fields under ordinary cultivation. Agriculture, Ecosystems and Environment, 2012, 151, 61-69.	5.3	15
54	A survey of soil phosphorus (P) and nitrogen (N) in Swedish horse paddocks. Agriculture, Ecosystems and Environment, 2013, 178, 1-9.	5.3	15

#	Article	IF	CITATIONS
55	Use of a flashiness index to predict phosphorus losses from subsurface drains on a Swedish farm with clay soils. Journal of Hydrology, 2016, 533, 581-590.	5.4	15
56	Phosphorus and nitrogen turnover and risk of waterborne phosphorus emissions in crop rotations on a clay soil in southwest Sweden. Soil Use and Management, 2005, 21, 221-230.	4.9	14
57	Nutrient leaching from clay soil monoliths with variable past manure inputs. Journal of Plant Nutrition and Soil Science, 2013, 176, 883-891.	1.9	12
58	Generating applicable environmental knowledge among farmers: experiences from two regions in Poland. Agroecology and Sustainable Food Systems, 2017, 41, 671-690.	1.9	12
59	Risk of phosphorus leaching from low input grassland areas. Geoderma, 2010, 158, 359-365.	5.1	11
60	Lime placement on subsoil as a strategy to reduce phosphorus leaching from agricultural soils. Soil Use and Management, 2016, 32, 381-389.	4.9	10
61	Recent Trends and Patterns of Nutrient Concentrations in Small Agricultural Streams in Sweden. Environmental Monitoring and Assessment, 2004, 98, 307-322.	2.7	9
62	Recession of phosphorus and nitrogen concentrations in tile drainage water after high poultry manure applications in two consecutive years. Agricultural Water Management, 2014, 146, 208-217.	5.6	9
63	Nutrient leaching from manure-amended topsoils (Cambisols and Histosols) in Sweden. Geoderma Regional, 2015, 5, 209-214.	2.1	9
64	Assessing strategies to mitigate phosphorus leaching from drained clay soils. Ambio, 2018, 47, 114-123.	5.5	9
65	Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils. Water Science and Technology, 2012, 65, 1903-1911.	2.5	8
66	Changes in pore networks and readily dispersible soil following structure liming of clay soils. Geoderma, 2021, 390, 114948.	5.1	8
67	Soil erosion in Nordic countries – future challenges and research needs. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 176-184.	0.6	7
68	Lagged response of nutrient leaching to reduced surpluses at the field and catchment scales. Hydrological Processes, 2015, 29, 3020-3037.	2.6	7
69	Changes in nutrient leaching and groundwater quality during long-term studies of an arable field on the Swedish south-west coast. Hydrology Research, 2008, 39, 63-77.	2.7	7
70	Simulation of Nitrate Leaching before and after Conversion to Ecological Farming. Biological Agriculture and Horticulture, 1999, 17, 59-75.	1.0	6
71	Long-term nutrient leaching from a Swedish arable field with intensified crop production against a background of climate change. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2009, 59, 157-169.	0.6	6
72	Impact of the North Atlantic Oscillation on Swedish Winter Climate and Nutrient Leaching. Journal of Environmental Quality, 2019, 48, 941-949.	2.0	6

#	Article	IF	CITATIONS
73	Leaching of nutrients and major ions from an arable field with an unfertilized fallow as infield buffer zone. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2008, 58, 51-59.	0.6	5
74	Nitrogen and phosphorus leaching under the potential biennial oilseed plant Lepidium campestre L. in a field trial. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 555-561.	0.6	5
75	Leaching of plant nutrients and heavy metals during the composting of household wastes and chemical characterization of the final product. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1997, 47, 142-148.	0.6	4
76	Long-term temporal dynamics and trends of particle-bound phosphorus and nitrate in agricultural stream waters. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 217-228.	0.6	4
77	Agricultural soil acidity and phosphorus leaching risk at farm level in two focus areas. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 359-368.	0.6	4
78	Phosphorus and nitrogen turnover and risk of waterborne phosphorus emissions in crop rotations on a clay soil in southwest Sweden. Soil Use and Management, 2006, 21, 221-230.	4.9	3
79	Cold Climate Phosphorus Uptake by Submerged Aquatic Plants in a Sewage Treatment Free Water Surface Wetland. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1177-1190.	1.7	2
80	Particulate-facilitated leaching of glyphosate and phosphorus from a marine clay soil via tile drains. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 241-251.	0.6	2
81	Biogeochemistry and weathering in a forest catchment and an arable field in central Sweden. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1998, 48, 201-211.	0.6	1
82	Field-scale phosphorus losses from a drained clay soil in Sweden. , 1999, 13, 2801.		1
83	Nutrient leaching driven by rainfall on a vermiculite clay soil under altered management and monitored with high-frequency time resolution. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2020, 70, 392-403	0.6	0