
Catherine A Lippi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6218056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Neglected Tropical Diseases, 2017, 11, e0005568.	3.0	430
2	Thermal biology of mosquitoâ€borne disease. Ecology Letters, 2019, 22, 1690-1708.	6.4	349
3	Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. PLoS Medicine, 2018, 15, e1002613.	8.4	135
4	Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malaria Journal, 2020, 19, 170.	2.3	83
5	The Social and Spatial Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil, Ecuador, 2012. International Journal of Environmental Research and Public Health, 2018, 15, 827.	2.6	46
6	Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control. PLoS Neglected Tropical Diseases, 2019, 13, e0007322.	3.0	38
7	Socio-Ecological Factors Associated with Dengue Risk and Aedes aegypti Presence in the Galápagos Islands, Ecuador. International Journal of Environmental Research and Public Health, 2019, 16, 682.	2.6	26
8	Predicting the fundamental thermal niche of crop pests and diseases in a changing world: A case study on citrus greening. Journal of Applied Ecology, 2019, 56, 2057-2068.	4.0	24
9	Trends and Opportunities in Tick-Borne Disease Geography. Journal of Medical Entomology, 2021, 58, 2021-2029.	1.8	23
10	Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador. PLoS Neglected Tropical Diseases, 2019, 13, e0007448.	3.0	21
11	Quantifying seasonal and diel variation in Anopheline and Culex human biting rates in Southern Ecuador. Malaria Journal, 2017, 16, 479.	2.3	19
12	Pliocene–Pleistocene lineage diversifications in the Eastern Indigo Snake (Drymarchon couperi) in the Southeastern United States. Molecular Phylogenetics and Evolution, 2016, 98, 111-122.	2.7	16
13	Spatiotemporal Tools for Emerging and Endemic Disease Hotspots in Small Areas: An Analysis of Dengue and Chikungunya in Barbados, 2013–2016. American Journal of Tropical Medicine and Hygiene, 2020, 103, 149-156.	1.4	14
14	Exploring the Niche of <i>Rickettsia montanensis</i> (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae), Using Multiple Species Distribution Model Approaches. Journal of Medical Entomology, 2021, 58, 1083-1092.	1.8	12
15	Disentangling the Influence of Urbanization and Invasion on Endemic Geckos in Tropical Biodiversity Hot Spots: A Case Study of <i>Phyllodactylus martini</i> (Squamata: Phyllodactylidae) along an Urban Gradient in Curaçao. Bulletin of the Peabody Museum of Natural History, 2016, 57, 147-164.	1.1	10
16	Scoping review of distribution models for selected <i>Amblyomma</i> ticks and rickettsial group pathogens. PeerJ, 2021, 9, e10596.	2.0	10
17	Zika Virus Outbreak, Barbados, 2015–2016. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1857-1859.	1.4	9
18	Exploring the utility of social-ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0009257.	3.0	7

CATHERINE A LIPPI

#	Article	IF	CITATIONS
19	Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0009931.	3.0	7
20	A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. International Journal of Health Geographics, 2020, 19, 3.	2.5	5
21	Distributional Comments on the Teiid Lizards (Squamata: Teiidae) of Florida with a Key to Species. Caribbean Journal of Science, 2007, 43, 260-265.	0.3	4
22	Comparing the dietary niche overlap and ecomorphological differences between invasive <i>Hemidactylus mabouia</i> geckos and a native gecko competitor. Ecology and Evolution, 2021, 11, 18719-18732.	1.9	4
23	Interdisciplinary Collaborations Required: Teaching Health Educators Infectious Disease Dynamics. Pedagogy in Health Promotion, 2020, 6, 159-161.	0.8	1
24	Co-learning during the co-creation of a dengue early warning system for the health sector in Barbados. BMJ Global Health, 2022, 7, e007842.	4.7	1
25	Asian Bush Mosquito, Asian Rock Pool Mosquito Aedes japonicus japonicus (Theobald, 1901) (Insecta:) Tj ETQq1	1 0.78431 0.1	4 rgBT /Ove
26	A Bromeliad-Inhabiting Mosquito Wyeomyia vanduzeei Dyar and Knab 1906 (Insecta: Diptera: Culicidae). Edis, 2020, 2020, 5.	0.1	0