
André J Ouellette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6217828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A conserved βâ€bulge glycine residue facilitates folding and increases stability of the mouse αâ€defensin cryptdinâ€4. Peptide Science, 2022, 114, e24250.	1.8	1
2	p300 Serine 89: A Critical Signaling Integrator and Its Effects on Intestinal Homeostasis and Repair. Cancers, 2021, 13, 1288.	3.7	8
3	Anti-Inflammatory Effects of RTD-1 in a Murine Model of Chronic Pseudomonas aeruginosa Lung Infection: Inhibition of NF-κB, Inflammasome Gene Expression, and Pro-IL-1β Biosynthesis. Antibiotics, 2021, 10, 1043.	3.7	2
4	A host-directed macrocyclic peptide therapeutic for MDR gram negative bacterial infections. Scientific Reports, 2021, 11, 23447.	3.3	3
5	Host Defense Peptides as Templates for Antifungal Drug Development. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	13]4rgBT	Qverlock 1 10
6	Rhesus Theta Defensin 1 Promotes Long Term Survival in Systemic Candidiasis by Host Directed Mechanisms. Scientific Reports, 2019, 9, 16905.	3.3	22
7	RTD-1 therapeutically normalizes synovial gene signatures in rat autoimmune arthritis and suppresses proinflammatory mediators in RA synovial fibroblasts. Physiological Genomics, 2019, 51, 657-667.	2.3	10
8	Entamoeba histolytica Alters Ileal Paneth Cell Functions in Intact and Muc2 Mucin Deficiency. Infection and Immunity, 2018, 86, .	2.2	7
9	Fungicidal Potency and Mechanisms of Î, Defensins against Multidrug-Resistant Candida Species. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	28
10	Macrocyclic Î,-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α–converting enzyme. Journal of Biological Chemistry, 2018, 293, 2725-2734.	3.4	28
11	Essential role of IFN- $\hat{1}^3$ in T cellâ \in "associated intestinal inflammation. JCI Insight, 2018, 3, .	5.0	83
12	Suppression and resolution of autoimmune arthritis by rhesus Î,-defensin-1, an immunomodulatory macrocyclic peptide. PLoS ONE, 2017, 12, e0187868.	2.5	13
13	A Requirement for Metamorphic Interconversion in the Antimicrobial Activity of Chemokine XCL1. Biochemistry, 2016, 55, 3784-3793.	2.5	15
14	Salmonella Mitigates Oxidative Stress and Thrives in the Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration. Cell Host and Microbe, 2016, 19, 814-825.	11.0	109
15	Rhesus macaque Î, defensin RTD-1 inhibits proinflammatory cytokine secretion and gene expression by inhibiting the activation of NF-IºB and MAPK pathways. Journal of Leukocyte Biology, 2015, 98, 1061-1070.	3.3	40
16	Microbicidal effects of α- and Î,-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immunity, 2015, 21, 17-29.	2.4	25
17	The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance. Amino Acids, 2012, 43, 1471-1483.	2.7	29
18	Rhesus Macaque Theta Defensins Suppress Inflammatory Cytokines and Enhance Survival in Mouse Models of Bacteremic Sepsis. PLoS ONE, 2012, 7, e51337.	2.5	70

André J Ouellette

#	Article	IF	CITATIONS
19	HD6 Defensin Nanonets. Science, 2012, 337, 420-421.	12.6	9
20	Inhibition of bactericidal activity is maintained in a mouse α-defensin precursor with proregion truncations. Peptides, 2010, 31, 9-15.	2.4	5
21	Rhesus macaque Î,-defensin isoforms: expression, antimicrobial activities, and demonstration of a prominent role in neutrophil granule microbicidal activities. Journal of Leukocyte Biology, 2010, 89, 283-290.	3.3	54
22	Diversity and activation of rhesus Paneth cell αâ€defensins. FASEB Journal, 2010, 24, 952.8.	0.5	0
23	Paneth Cell αâ€Defensin Polymorphisms in C57Bl/6 Mice and Identification of Vestigial Myeloid αâ€Defensin Genes in the Mouse Genome. FASEB Journal, 2010, 24, 518.2.	0.5	0
24	Postâ€secretory activation of Paneth cell αâ€defensins in the cecal and colonic lumen of matrix metalloproteinaseâ€7â€null mice. FASEB Journal, 2010, 24, 952.7.	0.5	0
25	Proximity of proregion anionic residues to the mature region maintains proCryptdinâ€4 inhibition. FASEB Journal, 2010, 24, 521.2.	0.5	0
26	Introduction of protein transduction domains to the Nâ€ŧerminus of βâ€defensins influences microbicidal activity. FASEB Journal, 2010, 24, 117.7.	0.5	0
27	Anionic Amino Acids near the Pro-α-defensin N Terminus Mediate Inhibition of Bactericidal Activity in Mouse Pro-cryptdin-4. Journal of Biological Chemistry, 2009, 284, 6826-6831.	3.4	23
28	Electropositive Charge in α-Defensin Bactericidal Activity: Functional Effects of Lys-for-Arg Substitutions Vary with the Peptide Primary Structure. Infection and Immunity, 2009, 77, 5035-5043.	2.2	57
29	Microbicidal Properties and Cytocidal Selectivity of Rhesus Macaque Theta Defensins. Antimicrobial Agents and Chemotherapy, 2008, 52, 944-953.	3.2	80
30	Structural and Functional Characterization of the Conserved Salt Bridge in Mammalian Paneth Cell α-Defensins. Journal of Biological Chemistry, 2006, 281, 28068-28078.	3.4	40
31	Mammalian defensins in the antimicrobial immune response. Nature Immunology, 2005, 6, 551-557.	14.5	1,070
32	Functional Analysis of the α-Defensin Disulfide Array in Mouse Cryptdin-4. Journal of Biological Chemistry, 2004, 279, 44188-44196.	3.4	119
33	Defensin-mediated innate immunity in the small intestine. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2004, 18, 405-419.	2.4	82
34	Solution Structure of Cryptdin-4, a Mouse Paneth Cell α-Defensin [,] . Biochemistry, 2004, 43, 15759-15766.	2.5	37
35	Structural Determinants of Procryptdin Recognition and Cleavage by Matrix Metalloproteinase-7. Journal of Biological Chemistry, 2003, 278, 7910-7919.	3.4	80
36	Paneth Cell Defensins and Innate Immunity of the Small Bowel. Inflammatory Bowel Diseases, 2001, 7, 43-50.	1.9	122

André J Ouellette

#	Article	IF	CITATIONS
37	Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunology, 2000, 1, 113-118.	14.5	939
38	Regulation of Intestinal α-Defensin Activation by the Metalloproteinase Matrilysin in Innate Host Defense. Science, 1999, 286, 113-117.	12.6	1,041
39	A Cyclic Antimicrobial Peptide Produced in Primate Leukocytes by the Ligation of Two Truncated α-Defensins. Science, 1999, 286, 498-502.	12.6	685
40	Antimicrobial Peptide Effectors of Small Intestinal Innate Immunity. , 0, , 191-221.		0