Juan F Galisteo López

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6217779/publications.pdf

Version: 2024-02-01

53	2,416	279798	48
papers	citations	h-index	g-index
53	53	53	3453
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Complex Interplay of Lead Halide Perovskites with Their Surroundings. Advanced Optical Materials, 2021, 9, 2100133.	7.3	7
2	The Role of the Atmosphere on the Photophysics of Ligandâ€Free Leadâ€Halide Perovskite Nanocrystals. Advanced Optical Materials, 2021, 9, 2100605.	7.3	5
3	Nanophotonics for current and future white light-emitting devices. Journal of Applied Physics, 2021, 130, .	2.5	8
4	Local Rearrangement of the Iodide Defect Structure Determines the Phase Segregation Effect in Mixed-Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 4911-4916.	4.6	20
5	Monitoring, Modeling, and Optimization of Lead Halide Perovskite Nanocrystal Growth within Porous Matrices. Journal of Physical Chemistry C, 2020, 124, 8041-8046.	3.1	2
6	Spatially Resolved Analysis of Defect Annihilation and Recovery Dynamics in Metal Halide Perovskite Single Crystals. ACS Applied Energy Materials, 2019, 2, 6967-6972.	5.1	15
7	Mechanism of Photoluminescence Intermittency in Organic–Inorganic Perovskite Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6344-6349.	8.0	17
8	Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment. Journal of Physical Chemistry Letters, 2018, 9, 2077-2084.	4.6	17
9	Flexible and Adaptable Lightâ€Emitting Coatings for Arbitrary Metal Surfaces based on Optical Tamm Mode Coupling. Advanced Optical Materials, 2018, 6, 1700560.	7.3	19
10	Improving the Bulk Emission Properties of CH ₃ NH ₃ PbBr ₃ by Modifying the Halide-Related Defect Structure. Journal of Physical Chemistry C, 2018, 122, 27250-27255.	3.1	4
11	Highly Efficient and Environmentally Stable Flexible Color Converters Based on Confined CH ₃ NH ₃ PbBr ₃ Nanocrystals. ACS Applied Materials & Amp; Interfaces, 2018, 10, 38334-38340.	8.0	20
12	Unexpected Optical Blue Shift in Large Colloidal Quantum Dots by Anionic Migration and Exchange. Journal of Physical Chemistry Letters, 2018, 9, 3124-3130.	4.6	6
13	Origin of Light-Induced Photophysical Effects in Organic Metal Halide Perovskites in the Presence of Oxygen. Journal of Physical Chemistry Letters, 2018, 9, 3891-3896.	4.6	109
14	Facile Synthesis of Hybrid Organic–Inorganic Perovskite Microcubes of Optical Quality Using Polar Antisolvents. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35505-35510.	8.0	4
15	Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)., 2017,,.		O
16	Three-Dimensional Optical Tomography and Correlated Elemental Analysis of Hybrid Perovskite Microstructures: An Insight into Defect-Related Lattice Distortion and Photoinduced Ion Migration. Journal of Physical Chemistry Letters, 2016, 7, 5227-5234.	4.6	37
17	Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules. Biophysical Journal, 2016, 111, 875-882.	0.5	17
18	Full solution process approach for deterministic control of light emission at the nanoscale (Conference Presentation). , 2016, , .		0

#	Article	IF	Citations
19	Photophysical Analysis of the Formation of Organic–Inorganic Trihalide Perovskite Films: Identification and Characterization of Crystal Nucleation and Growth. Journal of Physical Chemistry C, 2016, 120, 3071-3076.	3.1	23
20	Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 2200-2205.	4.6	205
21	Tunable emission in dye-doped truxene-based organogels through RET. Journal of Materials Chemistry C, 2015, 3, 5764-5768.	5 . 5	7
22	3D photonic crystals from highly monodisperse FRET-based red luminescent PMMA spheres. Journal of Materials Chemistry C, 2015, 3, 3999-4006.	5 . 5	10
23	Protective Ligand Shells for Luminescent SiO ₂ -Coated Alloyed Semiconductor Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6935-6945.	8.0	25
24	Organic Opals: Properties and Applications. , 2015, , 31-55.		1
25	BaMgF ₄ : An Ultraâ€Transparent Twoâ€Dimensional Nonlinear Photonic Crystal with Strong <i>Ät</i> ⁽³⁾ Response in the UV Spectral Region. Advanced Functional Materials, 2014, 24, 1509-1518.	14.9	36
26	FRET-Tuned Resonant Random Lasing. Journal of Physical Chemistry C, 2014, 118, 9665-9669.	3.1	29
27	FRETâ€Mediated Amplified Spontaneous Emission in DNA–CTMA Complexes. Advanced Optical Materials, 2013, 1, 651-656.	7.3	15
28	Ultrabroadband generation of multiple concurrent nonlinear coherent interactions in random quadratic media. Applied Physics Letters, 2013, 103, 101101.	3. 3	5
29	Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express, 2012, 20, 29940.	3.4	26
30	Light confinement by two-dimensional arrays of dielectric spheres. Physical Review B, 2012, 85, .	3.2	62
31	Studying Light Propagation in Self-Assembled Hybrid Photonic–Plasmonic Crystals by Fourier Microscopy. Langmuir, 2012, 28, 9174-9179.	3 . 5	24
32	One-Step-Process Composite Colloidal Monolayers and Further Processing Aiming at Porous Membranes. Langmuir, 2012, 28, 13172-13180.	3 . 5	9
33	Selfâ€Assembled Photonic Structures. Advanced Materials, 2011, 23, 30-69.	21.0	583
34	Tunable magneto-photonic response of nickel nanostructures. Applied Physics Letters, 2011, 99, .	3.3	22
35	High Degree of Optical Tunability of Selfâ€Assembled Photonicâ€Plasmonic Crystals by Filling Fraction Modification. Advanced Functional Materials, 2010, 20, 4338-4343.	14.9	45
36	Enhancement and Directionality of Spontaneous Emission in Hybrid Selfâ€Assembled Photonic–Plasmonic Crystals. Small, 2010, 6, 1757-1761.	10.0	78

#	Article	IF	Citations
37	All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities. Optics Express, 2008, 16, 11624.	3.4	59
38	Optical response with threefold symmetry axis on oriented microdomains of opal photonic crystals. Physical Review B, 2008, 78, .	3.2	28
39	Phase delay and group velocity determination at a planar defect state in three dimensional photonic crystals. Applied Physics Letters, 2007, 90, 101113.	3.3	15
40	Optical response of artificial opals oriented along the \hat{l} 'X direction. Applied Physics Letters, 2007, 90, 231112.	3.3	7
41	Slow to superluminal light waves in thin 3D photonic crystals. Optics Express, 2007, 15, 15342.	3.4	25
42	Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry. Physical Review B, 2006, 73, .	3.2	55
43	Tuning and optical study of the ΓX and ΓL photonic pseudogaps in opals. Applied Physics Letters, 2005, 87, 201109.	3.3	19
44	Optical diffraction and high-energy features in three-dimensional photonic crystals. Physical Review B, $2005, 71, .$	3.2	96
45	Self-assembly approach to optical metamaterials. Journal of Optics, 2005, 7, S244-S254.	1.5	56
46	High-energy optical response of artificial opals. Physical Review B, 2004, 70, .	3.2	73
47	Engineered Planar Defects Embedded in Opals. Advanced Materials, 2004, 16, 341-345.	21.0	143
48	Photonic slab heterostructures based on opals. , 2004, 5450, 1.		1
49	In-depth study of the pseudogap in artificial opals. , 2004, , .		1
50	Optical study of the pseudogap in thickness and orientation controlled artificial opals. Physical Review B, 2003, 68, .	3.2	188
51	Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals. Applied Physics Letters, 2003, 82, 4068-4070.	3.3	67
52	Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder. Physical Review E, 2002, 66, 036616.	2.1	54
53	Three-dimensional photonic crystals as a cage for light. Comptes Rendus Physique, 2002, 3, 67-77.	0.9	17