David J Mooney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/621701/publications.pdf

Version: 2024-02-01

384 papers 81,949 citations

125 h-index 275 g-index

395 all docs

395 docs citations

times ranked

395

59438 citing authors

#	Article	IF	Citations
1	Alginate: Properties and biomedical applications. Progress in Polymer Science, 2012, 37, 106-126.	11.8	5,658
2	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880.	23.0	4,623
3	Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24, 4337-4351.	5.7	4,376
4	Highly stretchable and tough hydrogels. Nature, 2012, 489, 133-136.	13.7	4,089
5	Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016, 1, .	23.3	2,817
6	Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20, 45-53.	5.7	2,025
7	Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016, 15, 326-334.	13.3	1,650
8	Polymeric system for dual growth factor delivery. Nature Biotechnology, 2001, 19, 1029-1034.	9.4	1,642
9	Alginate Hydrogels as Biomaterials. Macromolecular Bioscience, 2006, 6, 623-633.	2.1	1,500
10	Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Materials, 2010, 9, 518-526.	13.3	1,319
11	Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of the Royal Society Interface, 2011, 8, 153-170.	1.5	1,150
12	Tough adhesives for diverse wet surfaces. Science, 2017, 357, 378-381.	6.0	1,068
13	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	13.7	1,045
14	Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 2017, 18, 728-742.	16.1	1,042
15	Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 1996, 17, 1417-1422.	5.7	1,008
16	Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 1998, 16, 224-230.	4.9	850
17	Engineering tumors with 3D scaffolds. Nature Methods, 2007, 4, 855-860.	9.0	779
18	Inspiration and application in the evolution of biomaterials. Nature, 2009, 462, 426-432.	13.7	717

#	Article	IF	Citations
19	Open pore biodegradable matrices formed with gas foaming. , 1998, 42, 396-402.		700
20	Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 2014, 13, 970-978.	13.3	689
21	DNA delivery from polymer matrices for tissue engineering. Nature Biotechnology, 1999, 17, 551-554.	9.4	651
22	Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14452-14459.	3.3	651
23	Substrate stress relaxation regulates cell spreading. Nature Communications, 2015, 6, 6364.	5.8	637
24	Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 67-72.	3.3	630
25	Vascular Endothelial Growth Factor (VEGF)-Mediated Angiogenesis Is Associated with Enhanced Endothelial Cell Survival and Induction of Bcl-2 Expression. American Journal of Pathology, 1999, 154, 375-384.	1.9	591
26	Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress, 2001, 17, 945-950.	1.3	573
27	Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 2005, 26, 2455-2465.	5.7	565
28	Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. Journal of Controlled Release, 2000, 64, 91-102.	4.8	482
29	The tensile properties of alginate hydrogels. Biomaterials, 2004, 25, 3187-3199.	5.7	469
30	Controlled growth factor release from synthetic extracellular matrices. Nature, 2000, 408, 998-1000.	13.7	454
31	An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials, 2011, 32, 65-74.	5.7	454
32	Switching from differentiation to growth in hepatocytes: Control by extracellular matrix. Journal of Cellular Physiology, 1992, 151, 497-505.	2.0	449
33	Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nature Biotechnology, 2015, 33, 64-72.	9.4	436
34	Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology, 1999, 17, 979-983.	9.4	427
35	Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology, 2012, 13, 499-510.	7.0	416
36	Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules, 2000, 33, 4291-4294.	2.2	412

#	Article	IF	CITATIONS
37	Injectable preformed scaffolds with shape-memory properties. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19590-19595.	3.3	411
38	Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated boneÂformation. Nature Materials, 2015, 14, 1269-1277.	13.3	390
39	Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2000, 21, 2521-2527.	5.7	388
40	Infection-mimicking materials to program dendritic cells in situ. Nature Materials, 2009, 8, 151-158.	13.3	386
41	Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone, 2004, 35, 562-569.	1.4	376
42	Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3287-3292.	3.3	374
43	Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9762-9767.	3.3	372
44	Controlled Growth Factor Delivery for Tissue Engineering. Advanced Materials, 2009, 21, 3269-3285.	11.1	365
45	Spatio–temporal VEGF and PDGF Delivery Patterns Blood Vessel Formation and Maturation. Pharmaceutical Research, 2007, 24, 258-264.	1.7	363
46	Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8618-E8627.	3.3	362
47	Engineering growing tissues. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12025-12030.	3.3	360
48	Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials, 1996, 17, 115-124.	5.7	357
49	Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research Part B, 2002, 60, 217-223.	3.0	355
50	Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Materials, 2018, 17, 761-772.	13.3	352
51	Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nature Materials, 2017, 16, 1243-1251.	13.3	348
52	Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomaterials, 2015, 53, 502-521.	5.7	347
53	Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nature Reviews Cancer, 2016, 16, 56-66.	12.8	341
54	Bioinspired mechanically active adhesive dressings to accelerate wound closure. Science Advances, 2019, 5, eaaw3963.	4.7	337

#	Article	IF	Citations
55	Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 2007, 75, 178-185.	1.8	329
56	Growing New Organs. Scientific American, 1999, 280, 60-65.	1.0	320
57	Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials, 2003, 24, 4023-4029.	5.7	318
58	Cell Delivery Mechanisms for Tissue Repair. Cell Stem Cell, 2008, 2, 205-213.	5.2	316
59	A facile approach to enhance antigen response for personalized cancer vaccination. Nature Materials, 2018, 17, 528-534.	13.3	313
60	Injectable cryogel-based whole-cell cancer vaccines. Nature Communications, 2015, 6, 7556.	5.8	312
61	Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 2000, 21, 1921-1927.	5.7	308
62	Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384.	23.0	306
63	Regulating Bone Formation <i>via</i> Controlled Scaffold Degradation. Journal of Dental Research, 2003, 82, 903-908.	2.5	304
64	Controlling Rigidity and Degradation of Alginate Hydrogels via Molecular Weight Distribution. Biomacromolecules, 2004, 5, 1720-1727.	2.6	304
65	In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature Communications, 2013, 4, 2326.	5.8	303
66	Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. Journal of Thrombosis and Haemostasis, 2007, 5, 590-598.	1.9	292
67	Stress-relaxation behavior in gels with ionic and covalent crosslinks. Journal of Applied Physics, 2010, 107, 63509.	1.1	287
68	Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nature Materials, 2017, 16, 236-243.	13.3	286
69	Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials, 2013, 34, 8042-8048.	5.7	282
70	Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 399-404.	3.3	280
71	Soft robotic sleeve supports heart function. Science Translational Medicine, 2017, 9, .	5.8	280
72	Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. Journal of Biomechanics, 2003, 36, 1087-1096.	0.9	274

#	Article	IF	CITATIONS
73	Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Advanced Healthcare Materials, 2015, 4, 1628-1633.	3.9	272
74	Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nature Biotechnology, 2018, 36, 160-169.	9.4	271
75	Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials, 2014, 35, 2477-2487.	5.7	266
76	Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffoldsin vitro. , 2000, 50, 50-58.		263
77	An Integrated Microrobotic Platform for Onâ€Demand, Targeted Therapeutic Interventions. Advanced Materials, 2014, 26, 952-957.	11.1	259
78	Injection molding of chondrocyte/alginate constructs in the shape of facial implants. Journal of Biomedical Materials Research Part B, 2001, 55, 503-511.	3.0	256
79	Macroscale delivery systems for molecular and cellular payloads. Nature Materials, 2013, 12, 1004-1017.	13.3	251
80	Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials, 2015, 50, 30-37.	5.7	238
81	Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices., 1998, 57, 46-54.		233
82	The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nature Immunology, 2015, 16, 75-84.	7.0	233
83	Influence of the stiffness of three-dimensional alginate/collagen-l interpenetrating networks on fibroblast biology. Biomaterials, 2014, 35, 8927-8936.	5.7	226
84	Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials, 2017, 140, 103-114.	5.7	220
85	Rigidity of Two-Component Hydrogels Prepared from Alginate and Poly(ethylene glycol)â^'Diamines. Macromolecules, 1999, 32, 5561-5566.	2.2	218
86	Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges., 1997, 37, 413-420.		217
87	Engineered Bone Development from a Pre-Osteoblast Cell Line on Three-Dimensional Scaffolds. Tissue Engineering, 2000, 6, 605-617.	4.9	214
88	Tissue engineering using synthetic extracellular matrices. Nature Medicine, 1996, 2, 824-826.	15.2	212
89	Synthesis of cross-linked poly(aldehyde guluronate) hydrogels. Polymer, 1999, 40, 3575-3584.	1.8	212
90	In Situ Regulation of DC Subsets and T Cells Mediates Tumor Regression in Mice. Science Translational Medicine, 2009, 1, 8ra19.	5.8	211

#	Article	IF	Citations
91	Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Advanced Drug Delivery Reviews, 2012, 64, 1257-1276.	6.6	210
92	A Bioinspired Soft Actuated Material. Advanced Materials, 2014, 26, 1200-1206.	11.1	210
93	Engineering vascular networks in porous polymer matrices. Journal of Biomedical Materials Research Part B, 2002, 60, 668-678.	3.0	207
94	Photoactivation of Endogenous Latent Transforming Growth Factor–β1 Directs Dental Stem Cell Differentiation for Regeneration. Science Translational Medicine, 2014, 6, 238ra69.	5.8	206
95	Obstacles and opportunities in a forward vision for cancer nanomedicine. Nature Materials, 2021, 20, 1469-1479.	13.3	206
96	Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials, 2016, 98, 184-191.	5.7	205
97	Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Advanced Functional Materials, 2020, 30, 1909125.	7.8	204
98	Material-based deployment enhances efficacy of endothelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14347-14352.	3.3	199
99	Engineering smooth muscle tissue with a predefined structure. , 1998, 41, 322-332.		196
100	Regulating Myoblast Phenotype Through Controlled Gel Stiffness and Degradation. Tissue Engineering, 2007, 13, 1431-1442.	4.9	195
101	Degradation Behavior of Covalently Cross-Linked Poly(aldehyde guluronate) Hydrogels. Macromolecules, 2000, 33, 97-101.	2.2	194
102	Cartilage Engineered in Predetermined Shapes Employing Cell Transplantation on Synthetic Biodegradable Polymers. Plastic and Reconstructive Surgery, 1994, 94, 233-237.	0.7	192
103	3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents. Advanced Materials, 2015, 27, 6644-6650.	11.1	192
104	Independent Control of Rigidity and Toughness of Polymeric Hydrogels. Macromolecules, 2003, 36, 4582-4588.	2.2	191
105	Engineered Smooth Muscle Tissues: Regulating Cell Phenotype with the Scaffold. Experimental Cell Research, 1999, 251, 318-328.	1.2	187
106	Biodegradable sponges for hepatocyte transplantation. Journal of Biomedical Materials Research Part B, 1995, 29, 959-965.	3.0	181
107	Advanced bandages for diabetic wound healing. Science Translational Medicine, $2021,13,.$	5.8	181
108	Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Advanced Biology, 2017, 1, 1600013.	3.0	175

#	Article	IF	Citations
109	Macroscale biomaterials strategies for local immunomodulation. Nature Reviews Materials, 2019, 4, 379-397.	23.3	172
110	Release from alginate enhances the biological activity of vascular endothelial growth factor. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1267-1278.	1.9	170
111	Substance P Promotes Wound Healing in Diabetes by Modulating Inflammation and Macrophage Phenotype. American Journal of Pathology, 2015, 185, 1638-1648.	1.9	170
112	Craniofacial Tissue Engineering. Critical Reviews in Oral Biology and Medicine, 2001, 12, 64-75.	4.4	166
113	Protein-based signaling systems in tissue engineering. Current Opinion in Biotechnology, 2003, 14, 559-565.	3.3	166
114	Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials, 2013, 34, 9201-9209.	5.7	165
115	Nanoscale Adhesion Ligand Organization Regulates Osteoblast Proliferation and Differentiation. Nano Letters, 2004, 4, 1501-1506.	4.5	164
116	Design and Fabrication of Biodegradable Polymer Devices to Engineer Tubular Tissues. Cell Transplantation, 1994, 3, 203-210.	1.2	162
117	Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. Journal of Controlled Release, 2003, 87, 49-56.	4.8	161
118	Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 56, 228-233.	3.0	157
119	Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer, 2002, 43, 6239-6246.	1.8	157
120	Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions. Journal of Biomechanical Engineering, 2000, 122, 210-215.	0.6	153
121	Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials, 2004, 25, 2461-2466.	5.7	153
122	Hydrogels for combination delivery of antineoplastic agents. Biomaterials, 2001, 22, 2625-2633.	5.7	150
123	Biomaterials for skeletal muscle tissue engineering. Current Opinion in Biotechnology, 2017, 47, 16-22.	3.3	150
124	Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nature Nanotechnology, 2021, 16, 1019-1029.	15.6	144
125	Biologic-free mechanically induced muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1534-1539.	3.3	142
126	Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014, 35, 6850-6858.	5.7	140

#	Article	IF	CITATIONS
127	Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials, 2007, 28, 3644-3655.	5.7	139
128	Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects. Bone, 2011, 49, 485-492.	1.4	135
129	Targeted Delivery of Nanoparticles to Ischemic Muscle for Imaging and Therapeutic Angiogenesis. Nano Letters, 2011, 11, 694-700.	4.5	135
130	Dynamic Seeding and in Vitro Culture of Hepatocytes in a Flow Perfusion System. Tissue Engineering, 2000, 6, 39-44.	4.9	134
131	Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomaterialia, 2018, 65, 36-43.	4.1	134
132	Smooth muscle cell adhesion to tissue engineering scaffolds. Biomaterials, 2000, 21, 2025-2032.	5.7	132
133	Engineering Dental Pulp-like Tissue in Vitro. Biotechnology Progress, 1996, 12, 865-868.	1.3	131
134	Biomaterials to Mimic and Heal Connective Tissues. Advanced Materials, 2019, 31, e1806695.	11.1	131
135	Clickâ€Crosslinked Injectable Gelatin Hydrogels. Advanced Healthcare Materials, 2016, 5, 541-547.	3.9	129
136	Biphasic Ferrogels for Triggered Drug and Cell Delivery. Advanced Healthcare Materials, 2014, 3, 1869-1876.	3.9	126
137	The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials, 2011, 32, 8905-8914.	5.7	124
138	Vaccines Combined with Immune Checkpoint Antibodies Promote Cytotoxic T-cell Activity and Tumor Eradication. Cancer Immunology Research, 2016, 4, 95-100.	1.6	124
139	Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15392-15397.	3.3	124
140	On-demand drug delivery from local depots. Journal of Controlled Release, 2015, 219, 8-17.	4.8	123
141	Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. Journal of Periodontal Research, 1999, 34, 413-419.	1.4	121
142	Peptide and Protein Presenting Materials for Tissue Engineering. Advanced Materials, 2004, 16, 17-25.	11.1	120
143	Sustained Vascular Endothelial Growth Factor Delivery Enhances Angiogenesis and Perfusion in Ischemic Hind Limb. Pharmaceutical Research, 2005, 22, 1110-1116.	1.7	120
144	Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts. Acta Biomaterialia, 2017, 62, 82-90.	4.1	120

#	Article	IF	CITATIONS
145	Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12126-12131.	3.3	119
146	One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. Lab on A Chip, 2016, 16, 1549-1555.	3.1	119
147	Reprogrammed Stomach Tissue as a Renewable Source of Functional \hat{I}^2 Cells for Blood Glucose Regulation. Cell Stem Cell, 2016, 18, 410-421.	5.2	119
148	Comparative study of seeding methods for three-dimensional polymeric scaffolds. Journal of Biomedical Materials Research Part B, 2000, 51, 642-649.	3.0	118
149	Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells. Small, 2018, 14, 1702955.	5.2	118
150	A nanoparticle's pathway into tumours. Nature Materials, 2020, 19, 486-487.	13.3	117
151	Role of synthetic extracellular matrix in development of engineered dental pulp. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 749-764.	1.9	115
152	Biomaterials for enhancing anti-cancer immunity. Current Opinion in Biotechnology, 2016, 40, 1-8.	3.3	115
153	Hydrogel Formation via Cell Crosslinking. Advanced Materials, 2003, 15, 1828-1832.	11.1	113
154	Controlling Degradation of Hydrogels via the Size of Crosslinked Junctions. Advanced Materials, 2004, 16, 1917-1921.	11.1	112
155	Spatiotemporal control over growth factor signaling for therapeutic neovascularizationâ [†] . Advanced Drug Delivery Reviews, 2007, 59, 1340-1350.	6.6	112
156	Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10648-10653.	3.3	112
157	Biomaterial-based delivery for skeletal muscle repair. Advanced Drug Delivery Reviews, 2015, 84, 188-197.	6.6	105
158	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	7.3	104
159	Substrate Stressâ€Relaxation Regulates Scaffold Remodeling and Bone Formation In Vivo. Advanced Healthcare Materials, 2017, 6, 1601185.	3.9	104
160	Development of Technologies Aiding Large-Tissue Engineering. Biotechnology Progress, 1998, 14, 134-140.	1.3	103
161	Metabolic glycan labelling for cancer-targeted therapy. Nature Chemistry, 2020, 12, 1102-1114.	6.6	101
162	Design and Fabrication of a Biodegradable, Covalently Crosslinked Shape-Memory Alginate Scaffold for Cell and Growth Factor Delivery. Tissue Engineering - Part A, 2012, 18, 2000-2007.	1.6	99

#	Article	IF	Citations
163	Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nature Communications, 2020, 11, 5696.	5.8	99
164	Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19, 1244-1252.	13.3	99
165	Degradable and Removable Tough Adhesive Hydrogels. Advanced Materials, 2021, 33, e2008553.	11.1	99
166	Shearâ€reversibly Crosslinked Alginate Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 895-901.	2.1	98
167	Leveraging advances in biology to design biomaterials. Nature Materials, 2017, 16, 1178-1185.	13.3	97
168	Engineered materials for cancer immunotherapy. Nano Today, 2015, 10, 511-531.	6.2	96
169	Injectable, Tough Alginate Cryogels as Cancer Vaccines. Advanced Healthcare Materials, 2018, 7, e1701469.	3.9	96
170	Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials, 2019, 217, 119294.	5.7	95
171	Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8368-E8377.	3.3	93
172	Injectable, Poreâ€Forming Hydrogels for In Vivo Enrichment of Immature Dendritic Cells. Advanced Healthcare Materials, 2015, 4, 2677-2687.	3.9	92
173	Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nature Biomedical Engineering, 2022, 6, 1167-1179.	11.6	92
174	Identification of Immune Factors Regulating Antitumor Immunity Using Polymeric Vaccines with Multiple Adjuvants. Cancer Research, 2014, 74, 1670-1681.	0.4	91
175	Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials, 2019, 188, 187-197.	5.7	91
176	Controlled Drug Delivery from Polymers by Mechanical Signals. Advanced Materials, 2001, 13, 837-839.	11.1	90
177	Oneâ€Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie - International Edition, 2016, 55, 13470-13474.	7.2	90
178	Advances in Therapeutic Cancer Vaccines. Advances in Immunology, 2016, 130, 191-249.	1.1	88
179	Localized delivery of epidermal growth factor improves the survival of transplanted hepatocytes., 1996, 50, 422-429.		87
180	Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials, 2016, 99, 95-108.	5.7	87

#	Article	IF	CITATIONS
181	Polymers for pro- and anti-angiogenic therapy. Biomaterials, 2007, 28, 2069-2076.	5.7	86
182	The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials, 2016, 83, 249-256.	5.7	85
183	Refilling drug delivery depots through the blood. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12722-12727.	3.3	84
184	A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nature Biomedical Engineering, 2020, 4, 40-51.	11.6	83
185	Fabricating Tubular Devices from Polymers of Lactic and Glycolic Acid for Tissue Engineering. Tissue Engineering, 1995, 1, 107-118.	4.9	82
186	SHAPE-DEFINING SCAFFOLDS FOR MINIMALLY INVASIVE TISSUE ENGINEERING. Transplantation, 2004, 77, 1798-1803.	0.5	82
187	Morphogenesis of 3D vascular networks is regulated by tensile forces. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3215-3220.	3.3	81
188	Fluorescent resonance energy transfer: A tool for probing molecular cell–biomaterial interactions in three dimensions. Biomaterials, 2007, 28, 2424-2437.	5.7	79
189	Multicomponent Injectable Hydrogels for Antigenâ€Specific Tolerogenic Immune Modulation. Advanced Healthcare Materials, 2017, 6, 1600773.	3.9	79
190	Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials, 2018, 181, 189-198.	5.7	79
191	An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nature Biotechnology, 2019, 37, 293-302.	9.4	7 9
192	Ca2+ released from calcium alginate gels can promote inflammatory responses in vitro and in vivo. Acta Biomaterialia, 2013, 9, 9281-9291.	4.1	78
193	Minimally Invasive Approach to the Repair of Injured Skeletal Muscle With a Shape-memory Scaffold. Molecular Therapy, 2014, 22, 1441-1449.	3.7	78
194	Sustained Delivery of VEGF Maintains Innervation and Promotes Reperfusion in Ischemic Skeletal Muscles Via NGF/GDNF Signaling. Molecular Therapy, 2014, 22, 1243-1253.	3.7	77
195	Altered ECM deposition by diabetic foot ulcerâ€derived fibroblasts implicates fibronectin in chronic wound repair. Wound Repair and Regeneration, 2016, 24, 630-643.	1.5	77
196	Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24802-24811.	4.0	76
197	Synthetic Extracellular Matrices for Tissue Engineering and Regeneration. Current Topics in Developmental Biology, 2004, 64, 181-205.	1.0	75
198	Biomaterials as Local Niches for Immunomodulation. Accounts of Chemical Research, 2020, 53, 1749-1760.	7.6	73

#	Article	IF	Citations
199	Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Science Advances, 2020, 6, eaaw0158.	4.7	73
200	Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomedical Microdevices, 2010, 12, 145-151.	1.4	72
201	Transplantation of hepatocytes using porous, biodegradable sponges. Transplantation Proceedings, 1994, 26, 3425-6.	0.3	72
202	Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nature Biomedical Engineering, 2018, 2, 416-428.	11.6	70
203	Sustained and Controlled Release of Daunomycin from Crossâ€Linked Poly(aldehyde guluronate) Hydrogels. Journal of Pharmaceutical Sciences, 2000, 89, 910-919.	1.6	66
204	Extracellular matrix plasticity as a driver of cell spreading. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25999-26007.	3.3	65
205	A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature, 2022, 606, 992-998.	13.7	65
206	RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells. Biomaterials, 2018, 181, 182-188.	5.7	64
207	Increased Vascularization and Heterogeneity of Vascular Structures Occurring in Polyglycolide Matrices Containing Aortic Endothelial Cells Implanted in the Rat. Tissue Engineering, 1997, 3, 149-160.	4.9	63
208	Matrix stiffness and tumor-associated macrophages modulate epithelial to mesenchymal transition of human adenocarcinoma cells. Biofabrication, 2018, 10, 035004.	3.7	63
209	Promoting Angiogenesis in Engineered Tissues. Journal of Drug Targeting, 2001, 9, 397-406.	2.1	62
210	In-situ tissue regeneration through SDF- $1\hat{l}\pm$ driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomaterialia, 2017, 60, 50-63.	4.1	62
211	Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17933-17938.	3.3	61
212	Active biomaterials for mechanobiology. Biomaterials, 2021, 267, 120497.	5.7	60
213	The Mesentery as a Laminated Vascular Bed for Hepatocyte Transplantation. Cell Transplantation, 1994, 3, 273-281.	1.2	59
214	Inflammatory Cytokines Presented from Polymer Matrices Differentially Generate and Activate DCs In Situ. Advanced Functional Materials, 2013, 23, 4621-4628.	7.8	59
215	Parameters affecting cellular adhesion to polylactide films. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 147-161.	1.9	58
216	THE IMPACT OF TISSUE ENGINEERING ON DENTISTRY. Journal of the American Dental Association, 2000, 131, 309-318.	0.7	58

#	Article	IF	CITATIONS
217	Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. Journal of Investigative Dermatology, 2020, 140, 901-911.e11.	0.3	58
218	Cyclic strain inhibits switching of smooth muscle cells to an osteoblastâ€like phenotype. FASEB Journal, 2003, 17, 1-21.	0.2	57
219	Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. Journal of Cell Science, 1995, 108 (Pt 6), 2311-20.	1.2	57
220	Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat., 1998, 41, 412-421.		54
221	Reâ€engineering the Functions of a Terminally Differentiated Epithelial Cell in Vivo. Annals of the New York Academy of Sciences, 1999, 875, 294-300.	1.8	54
222	Evaluation of Chain Stiffness of Partially Oxidized Polyguluronate. Biomacromolecules, 2002, 3, 1129-1134.	2.6	54
223	Surface Modification with Alginate-Derived Polymers for Stable, Protein-Repellent, Long-Circulating Gold Nanoparticles. ACS Nano, 2012, 6, 4796-4805.	7.3	53
224	Materials based tumor immunotherapy vaccines. Current Opinion in Immunology, 2013, 25, 238-245.	2.4	53
225	Compression-induced dedifferentiation of adipocytes promotes tumor progression. Science Advances, 2020, 6, eaax5611.	4.7	53
226	Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover Molecular Biology of the Cell, 1994, 5, 1281-1288.	0.9	52
227	Tough Composite Hydrogels with High Loading and Local Release of Biological Drugs. Advanced Healthcare Materials, 2018, 7, e1701393.	3.9	52
228	Vasculogenic dynamics in 3D engineered tissue constructs. Scientific Reports, 2016, 5, 17840.	1.6	51
229	Switchable Release of Entrapped Nanoparticles from Alginate Hydrogels. Advanced Healthcare Materials, 2015, 4, 1634-1639.	3.9	50
230	Cellular Cross-linking of Peptide Modified Hydrogels. Journal of Biomechanical Engineering, 2005, 127, 220-228.	0.6	49
231	SHAPE RETAINING INJECTABLE HYDROGELS FOR MINIMALLY INVASIVE BULKING. Journal of Urology, 2004, 172, 763-768.	0.2	48
232	Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials, 2018, 161, 179-189.	5.7	47
233	Label-free bacterial detection using polydiacetylene liposomes. Chemical Communications, 2016, 52, 10346-10349.	2.2	46
234	Biomaterials to Spatially Regulate Cell Fate. Advanced Materials, 2002, 14, 886.	11,1	45

#	Article	IF	CITATIONS
235	Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials, 2016, 75, 91-101.	5 . 7	45
236	Antibiotic-Containing Agarose Hydrogel for Wound and Burn Care. Journal of Burn Care and Research, 2019, 40, 900-906.	0.2	44
237	Multifunctional biomimetic hydrogel systems to boost the immunomodulatory potential of mesenchymal stromal cells. Biomaterials, 2020, 257, 120266.	5 . 7	44
238	STING activation promotes robust immune response and NK cell–mediated tumor regression in glioblastoma models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	44
239	Single cell-laden protease-sensitive microniches for long-term culture in 3D. Lab on A Chip, 2017, 17, 727-737.	3.1	43
240	CD4 T-cells regulate angiogenesis and myogenesis. Biomaterials, 2018, 178, 109-121.	5.7	43
241	Niche-mimicking interactions in peptide-functionalized 3D hydrogels amplify mesenchymal stromal cell paracrine effects. Biomaterials, 2020, 230, 119639.	5.7	43
242	Cell and tissue engineering in lymph nodes for cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 42-62.	6.6	43
243	Changing the Mindset in Life Sciences Toward Translation: A Consensus. Science Translational Medicine, 2014, 6, 264cm12.	5.8	42
244	Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nature Protocols, 2020, 15, 773-798.	5.5	42
245	Skeletal muscle regeneration with robotic actuation–mediated clearance of neutrophils. Science Translational Medicine, 2021, 13, eabe8868.	5.8	42
246	Tissue engineering using cells and synthetic polymers. Transplantation Reviews, 1993, 7, 153-162.	1.2	41
247	Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats. Dental Materials, 2014, 30, e199-e207.	1.6	41
248	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	7.8	41
249	Rapid and Extensive Collapse from Electrically Responsive Macroporous Hydrogels. Advanced Healthcare Materials, 2014, 3, 500-507.	3.9	40
250	Replenishable drug depot to combat post-resection cancer recurrence. Biomaterials, 2018, 178, 373-382.	5.7	40
251	In vitro and In vivo Models for the Reconstruction of Intercellular Signalinga,. Annals of the New York Academy of Sciences, 1998, 842, 188-194.	1.8	39
252	The collagen I mimetic peptide <scp>DGEA</scp> enhances an osteogenic phenotype in mesenchymal stem cells when presented from cellâ€encapsulating hydrogels. Journal of Biomedical Materials Research - Part A, 2015, 103, 3516-3525.	2.1	39

#	Article	IF	CITATIONS
253	Adjuvantâ€Loaded Subcellular Vesicles Derived From Disrupted Cancer Cells for Cancer Vaccination. Small, 2016, 12, 2321-2333.	5. 2	39
254	Differentiation of diabetic foot ulcer–derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB Journal, 2019, 33, 1262-1277.	0.2	39
255	Effect of Pore Structure of Macroporous Poly(Lactide- <i>co</i> -Glycolide) Scaffolds on the <i>in Vivo</i> Enrichment of Dendritic Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8505-8512.	4.0	38
256	Combined delivery of VEGF and IGF-1 promotes functional innervation in mice and improves muscle transplantation in rabbits. Biomaterials, 2019, 216, 119246.	5.7	38
257	Open pore biodegradable matrices formed with gas foaming. , 1998, 42, 396.		38
258	Biomaterial-Based Vaccine Induces Regression of Established Intracranial Glioma in Rats. Pharmaceutical Research, 2011, 28, 1074-1080.	1.7	36
259	Cell Microencapsulation by Droplet Microfluidic Templating. Macromolecular Chemistry and Physics, 2017, 218, 1600380.	1.1	36
260	Immediate Treatment of Burn Wounds with High Concentrations of Topical Antibiotics in an Alginate Hydrogel Using a Platform Wound Device. Advances in Wound Care, 2020, 9, 48-60.	2.6	36
261	Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomaterialia, 2020, 110, 153-163.	4.1	36
262	Synthetic Lightâ€Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells. Advanced Materials, 2018, 30, 1704486.	11.1	35
263	A light-reflecting balloon catheter for atraumatic tissue defect repair. Science Translational Medicine, 2015, 7, 306ra149.	5 . 8	34
264	CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness. Biomaterials, 2016, 98, 152-162.	5.7	34
265	Oneâ€Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie, 2016, 128, 13668-13672.	1.6	33
266	Transplantation of enterocytes utilizing polymer-cell constructs to produce a neointestine. Transplantation Proceedings, 1992, 24, 3009-11.	0.3	33
267	Regenerative medicine in orthopaedic surgery. Journal of Orthopaedic Research, 2007, 25, 1261-1268.	1.2	32
268	Targeting DEC-205â^'DCIR2+ dendritic cells promotes immunological tolerance in proteolipid protein-induced experimental autoimmune encephalomyelitis. Molecular Medicine, 2018, 24, 17.	1.9	32
269	Comparative study of seeding methods for three-dimensional polymeric scaffolds. Journal of Biomedical Materials Research Part B, 2000, 52, 576-576.	3.0	31
270	Flow-Induced Vascular Network Formation and Maturation in Three-Dimensional Engineered Tissue. ACS Biomaterials Science and Engineering, 2018, 4, 1265-1271.	2.6	31

#	Article	IF	Citations
271	Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart. Annals of Biomedical Engineering, 2018, 46, 1534-1547.	1.3	31
272	Singleâ€Shot Mesoporous Silica Rods Scaffold for Induction of Humoral Responses Against Small Antigens. Advanced Functional Materials, 2020, 30, 2002448.	7.8	31
273	Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. Nature Biomedical Engineering, 2022, 6, 8-18.	11.6	31
274	Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. Journal of Controlled Release, 2008, 132, 273-278.	4.8	30
275	Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing. International Journal of Lower Extremity Wounds, 2015, 14, 146-153.	0.6	30
276	Improving Stem Cell Therapeutics with Mechanobiology. Cell Stem Cell, 2016, 18, 16-19.	5.2	30
277	Principles of Tissue Engineering and Reconstruction Using Polymer-Cell Constructs. Materials Research Society Symposia Proceedings, 1991, 252, 345.	0.1	28
278	In Vivo Targeting through Click Chemistry. ChemMedChem, 2015, 10, 617-620.	1.6	28
279	Generation of Induced Pluripotent Stem Cells from Diabetic Foot Ulcer Fibroblasts Using a Nonintegrative Sendai Virus. Cellular Reprogramming, 2016, 18, 214-223.	0.5	28
280	Injectable Shape-Memorizing Three-Dimensional Hyaluronic Acid Cryogels for Skin Sculpting and Soft Tissue Reconstruction. Tissue Engineering - Part A, 2017, 23, 243-251.	1.6	28
281	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4652-4656.	7.2	28
282	Anti-inflammatory nanoparticles significantly improve muscle function in a murine model of advanced muscular dystrophy. Science Advances, 2021, 7, .	4.7	28
283	Manipulating the Intersection of Angiogenesis and Inflammation. Annals of Biomedical Engineering, 2015, 43, 628-640.	1.3	27
284	Modular soft robotic microdevices for dexterous biomanipulation. Lab on A Chip, 2019, 19, 778-788.	3.1	27
285	Treating ischemia via recruitment of antigen-specific T cells. Science Advances, 2019, 5, eaav6313.	4.7	26
286	Engineered tissues and strategies to overcome challenges in drug development. Advanced Drug Delivery Reviews, 2020, 158, 116-139.	6.6	26
287	Covalent Conjugation of Peptide Antigen to Mesoporous Silica Rods to Enhance Cellular Responses. Bioconjugate Chemistry, 2018, 29, 733-741.	1.8	25
288	Delivering DNA with polymer matrices: applications in tissue engineering and gene therapy. Pharmaceutical Science & Technology Today, 2000, 3, 381-384.	0.7	24

#	Article	IF	Citations
289	The efficacy of intracranial PLG-based vaccines is dependent on direct implantation into brain tissue. Journal of Controlled Release, 2011, 154, 249-257.	4.8	24
290	Fibroblasts Derived from Human Pluripotent Stem Cells Activate Angiogenic Responses In Vitro and In Vivo. PLoS ONE, 2013, 8, e83755.	1.1	24
291	Multi-lineage MSC Differentiation <i>via</i> Engineered Morphogen Fields. Journal of Dental Research, 2014, 93, 1250-1257.	2.5	24
292	Alginate Hydrogels for <i>In Vivo</i> Bone Regeneration: The Immune Competence of the Animal Model Matters. Tissue Engineering - Part A, 2020, 26, 852-862.	1.6	24
293	Engineered composite fascia for stem cell therapy in tissue repair applications. Acta Biomaterialia, 2015, 26, 1-12.	4.1	23
294	In Vivo Enrichment of Diabetogenic T Cells. Diabetes, 2017, 66, 2220-2229.	0.3	23
295	Polymeric Systems for Bioinspired Delivery of Angiogenic Molecules. , 0, , 191-221.		22
296	Anti-tumor immunity induced by ectopic expression of viral antigens is transient and limited by immune escape. Oncolmmunology, 2019, 8, e1568809.	2.1	22
297	Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nature Materials, 2022, 21, 939-950.	13.3	22
298	Force Control of Textile-Based Soft Wearable Robots for Mechanotherapy. , 2018, , .		21
299	Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. Advanced Materials, 2022, 34, e2107207.	11.1	21
300	Cell Instructive Polymers., 2006, 102, 113-137.		20
301	Host Immune Competence and Local Ischemia Affects the Functionality of Engineered Vasculature. Microcirculation, 2007, 14, 77-88.	1.0	19
302	FGF2 Enhances Odontoblast Differentiation by $\hat{l}\pm SMA+$ Progenitors In Vivo. Journal of Dental Research, 2018, 97, 1170-1177.	2.5	19
303	Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices., 1998, 57, 46.		19
304	Viscoelastic Biomaterials for Tissue Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 289-300.	1.1	19
305	From Skeletal Development to Tissue Engineering: Lessons from the Micromass Assay. Tissue Engineering - Part B: Reviews, 2015, 21, 427-437.	2.5	18
306	Induction of Hepatocyte Differentiation by the Extracellular Matrix and an RGD-Containing Synthetic Peptide. Materials Research Society Symposia Proceedings, 1991, 252, 199.	0.1	17

#	Article	IF	Citations
307	Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue. Communications Biology, 2019, 2, 158.	2.0	17
308	Clickable, acid labile immunosuppressive prodrugs for <i>in vivo</i> targeting. Biomaterials Science, 2020, 8, 266-277.	2.6	16
309	A Novel Three-Dimensional Skin Disease Model to Assess Macrophage Function in Diabetes. Tissue Engineering - Part C: Methods, 2021, 27, 49-58.	1.1	16
310	Ultrasound-triggered release reveals optimal timing of CpG-ODN delivery from a cryogel cancer vaccine. Biomaterials, 2021, 279, 121240.	5.7	16
311	Aging and matrix viscoelasticity affect multiscale tendon properties and tendon derived cell behavior. Acta Biomaterialia, 2022, 143, 63-71.	4.1	16
312	Self-folding mobile microrobots for biomedical applications. , 2014, , .		15
313	Dual alginate crosslinking for local patterning of biophysical and biochemical properties. Acta Biomaterialia, 2020, 115, 185-196.	4.1	15
314	Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57.	1.1	14
315	Nondestructively Probing the Cross-Linking Density of Polymeric Hydrogels. Macromolecules, 2003, 36, 7887-7890.	2.2	14
316	Using HSV-Thymidine Kinase for Safety in an Allogeneic Salivary Graft Cell Line. Tissue Engineering, 2001, 7, 405-413.	4.9	13
317	Tuning cytokines enriches dendritic cells and regulatory T cells inÂthe periodontium. Journal of Periodontology, 2020, 91, 1475-1485.	1.7	13
318	Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. Journal of Biomedical Materials Research Part B, 2000, 50, 50.	3.0	13
319	Cryogel vaccines effectively induce immune responses independent of proximity to the draining lymph nodes. Biomaterials, 2022, 281, 121329.	5.7	13
320	RGD Island Spacing Controls Phenotype of Primary Human Fibroblasts Adhered to Ligand-Organized Hydrogels. Macromolecular Research, 2007, 15, 469-472.	1.0	12
321	Evaluation of a bioengineered construct for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2345-2354.	1.6	12
322	Nearâ€Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16, e2000369.	5.2	12
323	Immunologically Active Biomaterials for Cancer Therapy. Current Topics in Microbiology and Immunology, 2010, 344, 279-297.	0.7	11
324	A novel two-component, expandable bioadhesive for exposed defect coverage: Applicability to prenatal procedures. Journal of Pediatric Surgery, 2021, 56, 165-169.	0.8	11

#	Article	IF	CITATIONS
325	BREAST RECONSTRUCTION., 2000, , 409-423.		11
326	Actively regulating bioengineered tissue and organ formation. Orthodontics and Craniofacial Research, 2005, 8, 141-144.	1.2	10
327	A Modular Biomaterial Scaffoldâ€Based Vaccine Elicits Durable Adaptive Immunity to Subunit SARS oVâ€2 Antigens. Advanced Healthcare Materials, 2021, 10, e2101370.	3.9	10
328	Development of a physiological insulin resistance model in human stem cell–derived adipocytes. Science Advances, 2022, 8, .	4.7	10
329	Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research Part B, 2002, 60, 217-223.	3.0	9
330	Scaffold Vaccines for Generating Robust and Tunable Antibody Responses. Advanced Functional Materials, 2022, 32, .	7.8	9
331	Recent and Future Strategies of Mechanotherapy for Tissue Regenerative Rehabilitation. ACS Biomaterials Science and Engineering, 2022, 8, 4639-4642.	2.6	9
332	Biomaterials for Cell Immobilization. Focus on Biotechnology, 2004, , 15-32.	0.4	7
333	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. Angewandte Chemie, 2018, 130, 4742-4746.	1.6	7
334	Synthesis of Hydrogels., 2002,, 653-662.		7
335	Actuated 3D microgels for single cell mechanobiology. Lab on A Chip, 2022, 22, 1962-1970.	3.1	7
336	Controlled Growth Factor Delivery for Tissue Engineering. ACS Symposium Series, 2003, , 73-83.	0.5	6
337	Timed Delivery of Therapy Enhances Functional Muscle Regeneration. Advanced Healthcare Materials, 2017, 6, 1700202.	3.9	6
338	Risk quantification for SARS-CoV-2 infection through airborne transmission in university settings. Journal of Occupational and Environmental Hygiene, 2021, 18, 590-603.	0.4	6
339	The Effect of Growth-Mimicking Continuous Strain on the Early Stages of Skeletal Development in Micromass Culture. PLoS ONE, 2015, 10, e0124948.	1.1	6
340	Quantifying face mask comfort. Journal of Occupational and Environmental Hygiene, 2022, 19, 23-34.	0.4	6
341	Development of a liposomal near-infrared fluorescence lactate assay for human blood. Biomaterials, 2022, 283, 121475.	5.7	6
342	Targeting tumor extracellular matrix activates the tumor-draining lymph nodes. Cancer Immunology, Immunotherapy, 2022, 71, 2957-2968.	2.0	6

#	Article	IF	CITATIONS
343	Gas Foaming to Fabricate Polymer Scaffolds in Tissue Engineering. , 2005, , 155-167.		5
344	Steroid–Peptide Immunoconjugates for Attenuating T Cell Responses in an Experimental Autoimmune Encephalomyelitis Murine Model of Multiple Sclerosis. Bioconjugate Chemistry, 2020, 31, 2779-2788.	1.8	5
345	Delivery of targeted gene therapies using a hybrid cryogel-coated prosthetic vascular graft. PeerJ, 2019, 7, e7377.	0.9	5
346	Mechanical Checkpoint Regulates Monocyte Differentiation in Fibrotic Matrix. Blood, 2021, 138, 2539-2539.	0.6	5
347	Nanoparticle Properties Influence Transendothelial Migration of Monocytes. Langmuir, 2022, 38, 5603-5616.	1.6	5
348	Integrating cell Transplantation and Controlled Drug Delivery Technologies to Engineer Liver Tissue. Materials Research Society Symposia Proceedings, 1995, 394, 105.	0.1	4
349	Physical Polyurethane Hydrogels via Charge Shielding through Acids or Salts. Macromolecular Rapid Communications, 2018, 39, e1700711.	2.0	4
350	3D encapsulation and inflammatory licensing of mesenchymal stromal cells alter the expression of common reference genes used in real-time RT-qPCR. Biomaterials Science, 2020, 8, 6741-6753.	2.6	4
351	PEG Cross-Linked Alginate Hydrogels with Controlled Mechanical Properties. Materials Research Society Symposia Proceedings, 1998, 530, 37.	0.1	3
352	Growth Factor Delivery from Tissue Engineering Matrices: Inducing Angiogenesis to Enhance Transplanted Cell Engraftment. ACS Symposium Series, 2000, , 157-166.	0.5	3
353	Converging Cell Therapy with Biomaterials. , 2007, , 591-609.		3
354	Targeted Delivery: An Integrated Microrobotic Platform for On-Demand, Targeted Therapeutic Interventions (Adv. Mater. 6/2014). Advanced Materials, 2014, 26, 951-951.	11.1	3
355	Generation of the Compression-induced Dedifferentiated Adipocytes (CiDAs) Using Hypertonic Medium. Bio-protocol, 2021, 11, e3920.	0.2	3
356	Stabilizing Fiber-Based Cell Delivery Devices by Physically Bonding Adjacent Fibers. Materials Research Society Symposia Proceedings, 1993, 331, 47.	0.1	2
357	Integrating Cell Transplantation and Controlled Drug Delivery Technologies to Engineer Liver Tissue. Materials Research Society Symposia Proceedings, 1995, 385, 43.	0.1	2
358	Biomaterials in Liver Tissue Engineering. , 2000, 1, 65-73.		2
359	Regulation of Cellular Response to Mechanical Signals by Matrix Design. , 2003, , 291-304.		2
360	Regenerating Antithrombotic Surfaces through Nucleic Acid Displacement. ACS Biomaterials Science and Engineering, 2020, 6, 2159-2166.	2.6	2

#	Article	IF	CITATIONS
361	Filmed over with CAR-T cells. Nature Biomedical Engineering, 2020, 4, 142-143.	11.6	2
362	Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. , 2000, 50, 50.		2
363	Polysaccharide-Based Hydrogels in Tissue Engineering. , 2004, , .		2
364	Antiplatelet therapy for Staphylococcus aureus bacteremia: Will it stick?. PLoS Pathogens, 2022, 18, e1010240.	2.1	2
365	Immuneâ€responsive biodegradable scaffolds for enhancing neutrophil regeneration. Bioengineering and Translational Medicine, 2023, 8, .	3.9	2
366	Abstract PO085: Cryogel-based cancer vaccine to treat acute myeloid leukemia. Cancer Immunology Research, 2021, 9, PO085-PO085.	1.6	1
367	Open pore biodegradable matrices formed with gas foaming. , 1998, 42, 396.		1
368	Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
369	Controlling Fracture Behavior of Polymeric Hydrogels. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	0
370	Nanoscale RGD Peptide Organization Regulates Cell Proliferation and Differentiation. Materials Research Society Symposia Proceedings, 2004, 845, 59.	0.1	0
371	Breast Reconstruction. , 2007, , 519-534.		0
372	Surface Patterning: Spatiotemporal Control over Molecular Delivery and Cellular Encapsulation from Electropolymerized Micro- and Nanopatterned Surfaces(Adv. Funct. Mater. 18/2009). Advanced Functional Materials, 2009, 19, NA-NA.	7.8	0
373	Bioimaging: Metal-Enhanced Fluorescence to Quantify Bacterial Adhesion (Adv. Mater. 12/2011). Advanced Materials, 2011, 23, H126-H126.	11.1	0
374	Chemotaxis of Mesenchymal Stem Cells in a Microfluidic Device. Materials Research Society Symposia Proceedings, 2012, 1498, 67-72.	0.1	0
375	Pro-angiogenic factors enhance pericyte function during angiogenesis. , 2014, , .		0
376	Hydrogel-based system for mesenchymal stem cell recruitment. , 2014, , .		0
377	The Young Innovators of Cellular and Molecular Bioengineering. Cellular and Molecular Bioengineering, 2014, 7, 291-292.	1.0	0
378	Hydrogels in Vascular Tissue Engineering. , 2016, , 385-396.		0

#	Article	IF	CITATIONS
379	Delivery of Thrombospondin-2 Small Interfering RNA for Suppression of Intimal Hyperplasia. Journal of Vascular Surgery, 2021, 74, e297.	0.6	O
380	Modified Alginates for Tissue Engineering. , 2005, , 301-315.		0
381	Biodegradable Polymer Matrices in Dental Tissue Engineering. , 1998, , 443-459.		O
382	Scaffolds, Polymer: Gas Foaming Tissue Engineering. , 0, , 7036-7044.		0
383	Abstract 117: Development of a Hybrid Cryogel-coated Prosthetic Vascular Graft for Delivery of Targeted Gene Therapies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
384	EXTH-81. STING ACTIVATION PROMOTES ROBUST IMMUNE RESPONSE AND TUMOR REGRESSION IN GLIOBLASTOMA MODELS. Neuro-Oncology, 2021, 23, vi182-vi182.	0.6	0