
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6216995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biology, 2006, 8, 1223-1234.	10.3	884
3	Targeted Killing of Cancer Cells <i>in Vivo</i> and <i>in Vitro</i> with EGF-Directed Carbon Nanotube-Based Drug Delivery. ACS Nano, 2009, 3, 307-316.	14.6	796
4	Angiopoietin-1 Prevents VEGF-Induced Endothelial Permeability by Sequestering Src through mDia. Developmental Cell, 2008, 14, 25-36.	7.0	353
5	Vascular Permeability and Drug Delivery in Cancers. Frontiers in Oncology, 2013, 3, 211.	2.8	246
6	Regulation of cell–cell junctions by the cytoskeleton. Current Opinion in Cell Biology, 2006, 18, 541-548.	5.4	243
7	Glioblastoma stemâ€like cells secrete the proâ€angiogenic VEGFâ€A factor in extracellular vesicles. Journal of Extracellular Vesicles, 2017, 6, 1359479.	12.2	206
8	An essential role for Rac1 in endothelial cell function and vascular development. FASEB Journal, 2008, 22, 1829-1838.	0.5	193
9	Endothelial permeability and VE-cadherin. Cell Adhesion and Migration, 2014, 8, 158-164.	2.7	191
10	Evaluation of iron oxide nanoparticle biocompatibility. International Journal of Nanomedicine, 2011, 6, 787.	6.7	143
11	Semaphorin 3E Initiates Antiangiogenic Signaling through Plexin D1 by Regulating Arf6 and R-Ras. Molecular and Cellular Biology, 2010, 30, 3086-3098.	2.3	141
12	Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. Journal of Cell Science, 2004, 117, 257-270.	2.0	123
13	Breaking the VEâ€cadherin bonds. FEBS Letters, 2009, 583, 1-6.	2.8	118
14	Secreted factors from brain endothelial cells maintain glioblastoma stemâ€like cell expansion through the mTOR pathway. EMBO Reports, 2011, 12, 470-476.	4.5	114
15	A catalytic-independent role for the LUBAC in NF-κB activation upon antigen receptor engagement and in lymphoma cells. Blood, 2014, 123, 2199-2203.	1.4	105
16	Plexin-B1 Utilizes RhoA and Rho Kinase to Promote the Integrin-dependent Activation of Akt and ERK and ERK and Endothelial Cell Motility. Journal of Biological Chemistry, 2007, 282, 34888-34895.	3.4	104
17	Magnetic properties of Zn-substituted MnFe ₂ O ₄ nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chemistry of Materials, 2010, 22, 5420-5429.	6.7	104
18	Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene, 2016, 35, 2615-2623.	5.9	100

#	Article	IF	CITATIONS
19	VE-cadherin and claudin-5: it takes two to tango. Nature Cell Biology, 2008, 10, 883-885.	10.3	97
20	Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6362-6367.	7.1	86
21	Glioblastoma Cell-Secreted Interleukin-8 Induces Brain Endothelial Cell Permeability via CXCR2. PLoS ONE, 2012, 7, e45562.	2.5	84
22	Complementary Roles of Intracellular and Pericellular Collagen Degradation Pathways In Vivo. Molecular and Cellular Biology, 2007, 27, 6309-6322.	2.3	81
23	Protein Kinase C-related Kinase and ROCK Are Required for Thrombin-induced Endothelial Cell Permeability Downstream from Gα12/13 and Gα11/q. Journal of Biological Chemistry, 2008, 283, 29888-29896.	3.4	80
24	Differential Proteomic Analysis of Human Glioblastoma and Neural Stem Cells Reveals HDGF as a Novel Angiogenic Secreted Factor. Stem Cells, 2012, 30, 845-853.	3.2	71
25	Pharmacological targeting of apelin impairs glioblastoma growth. Brain, 2017, 140, 2939-2954.	7.6	70
26	Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. ELife, 2021, 10, .	6.0	70
27	A Role for a CXCR2/Phosphatidylinositol 3-Kinase γ Signaling Axis in Acute and Chronic Vascular Permeability. Molecular and Cellular Biology, 2009, 29, 2469-2480.	2.3	67
28	Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. Journal of Cell Science, 2012, 125, 4137-46.	2.0	66
29	Jumping the barrier: VEâ€cadherin, VECF and other angiogenic modifiers in cancer. Biology of the Cell, 2011, 103, 593-605.	2.0	65
30	Temozolomide affects Extracellular Vesicles Released by Glioblastoma Cells. Biochimie, 2018, 155, 11-15.	2.6	64
31	Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. Journal of Magnetism and Magnetic Materials, 2016, 416, 315-320.	2.3	59
32	Endothelial permeability and VE-cadherin. Cell Adhesion and Migration, 2013, 7, 465-471.	2.7	58
33	The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling. Journal of Cell Science, 2016, 129, 1775-80.	2.0	54
34	N-cadherin Activation Substitutes for the Cell Contact Control in Cell Cycle Arrest and Myogenic Differentiation. Journal of Biological Chemistry, 2004, 279, 36795-36802.	3.4	53
35	Tyrosine phosphorylation of DEP-1/CD148 as a mechanism controlling Src kinase activation, endothelial cell permeability, invasion, and capillary formation. Blood, 2012, 120, 2745-2756.	1.4	53
36	Clustering of cellular prion protein induces ERK1/2 and stathmin phosphorylation in GT1-7 neuronal cells. FEBS Letters, 2004, 576, 114-118.	2.8	50

#	Article	IF	CITATIONS
37	The C-terminus region of Î ² -arrestin1 modulates VE-cadherin expression and endothelial cell permeability. Cell Communication and Signaling, 2013, 11, 37.	6.5	37
38	PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget, 2015, 6, 4790-4803.	1.8	37
39	The Endoplasmic Reticulum Acts as a Platform for Ubiquitylated Components of Nuclear Factor κB Signaling. Science Signaling, 2013, 6, ra79.	3.6	36
40	A novel function for cadherin-11 in the regulation of motor axon elongation and fasciculation. Molecular and Cellular Neurosciences, 2005, 28, 715-726.	2.2	35
41	Tumor Vessels Fuel the Fire in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 6514.	4.1	35
42	PAKing up to the endothelium. Cellular Signalling, 2009, 21, 1727-1737.	3.6	34
43	Paracaspase MALT1 regulates glioma cell survival by controlling endoâ€lysosome homeostasis. EMBO Journal, 2020, 39, e102030.	7.8	33
44	Multiple PPPS/TP motifs act in a combinatorial fashion to transduce Wnt signaling through LRP6. FEBS Letters, 2008, 582, 255-261.	2.8	32
45	Spitting out the demons: Extracellular vesicles in glioblastoma. Cell Adhesion and Migration, 2017, 11, 164-172.	2.7	32
46	Pannexinâ€1 limits the production of proinflammatory cytokines during necroptosis. EMBO Reports, 2019, 20, e47840.	4.5	32
47	CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Reports, 2019, 27, 1657-1665.e4.	6.4	30
48	Proteomes of umbilical vein and microvascular endothelial cells reflect distinct biological properties and influence immune recognition. Proteomics, 2012, 12, 2547-2555.	2.2	28
49	Negative regulation of NF-κB signaling in T lymphocytes by the ubiquitin-specific protease USP34. Cell Communication and Signaling, 2013, 11, 25.	6.5	27
50	Cadherin-based cell adhesion in neuromuscular development. Biology of the Cell, 2002, 94, 315-326.	2.0	25
51	Remodeling of VE-cadherin junctions by the human herpes virus 8 G-protein coupled receptor. Oncogene, 2011, 30, 190-200.	5.9	24
52	Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers, 2013, 1, e23272.	3.2	23
53	Preeclamptic Plasma Induces Transcription Modifications Involving the AP-1 Transcriptional Regulator JDP2 in Endothelial Cells. American Journal of Pathology, 2013, 183, 1993-2006.	3.8	22
54	Differential Effects of Bartonella henselae on Human and Feline Macro- and Micro-Vascular Endothelial Cells. PLoS ONE, 2011, 6, e20204.	2.5	21

#	Article	IF	CITATIONS
55	Vesiclemia: counting on extracellular vesicles for glioblastoma patients. Oncogene, 2020, 39, 6043-6052.	5.9	21
56	β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability. Oncotarget, 2016, 7, 66865-66879.	1.8	20
57	Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit. Environmental Toxicology and Pharmacology, 2016, 45, 321-327.	4.0	18
58	The E3 ubiquitin ligase <scp>MARCH</scp> 3 controls the endothelial barrier. FEBS Letters, 2016, 590, 3660-3668.	2.8	18
59	Luteolin Impacts on the DNA Damage Pathway in Oral Squamous Cell Carcinoma. Nutrition and Cancer, 2016, 68, 838-847.	2.0	18
60	Role of Endothelial Cell–Cell Junctions in Endothelial Permeability. Methods in Molecular Biology, 2011, 763, 265-279.	0.9	18
61	Once upon a time there was β-catenin in cadherin-mediated signalling. Biology of the Cell, 2005, 97, 921-926.	2.0	17
62	A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Letters, 2006, 580, 3649-3656.	2.8	17
63	Interplay between BCL10, MALT1 and lκBα during T-cell-receptor-mediated NFκB activation. Journal of Cell Science, 2010, 123, 2375-2380.	2.0	17
64	The von Willebrand factor stamps plasmatic extracellular vesicles from glioblastoma patients. Scientific Reports, 2021, 11, 22792.	3.3	16
65	Endothelial Secreted Factors Suppress Mitogen Deprivation-Induced Autophagy and Apoptosis in Glioblastoma Stem-Like Cells. PLoS ONE, 2014, 9, e93505.	2.5	15
66	Control of CXCR2 activity through its ubiquitination on K327 residue. BMC Cell Biology, 2014, 15, 38.	3.0	15
67	Desert Hedgehog/Patch2 Axis Contributes to Vascular Permeability and Angiogenesis in Glioblastoma. Frontiers in Pharmacology, 2015, 6, 281.	3.5	15
68	YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions. Oncogene, 2014, 33, 5609-5618.	5.9	14
69	Interleukin-8 Secreted by Glioblastoma Cells Induces Microvascular Hyperpermeability Through NO Signaling Involving S-Nitrosylation of VE-Cadherin and p120 in Endothelial Cells. Frontiers in Physiology, 2019, 10, 988.	2.8	14
70	Neutrophil-derived extracellular vesicles induce endothelial inflammation and damage through the transfer of miRNAs. Journal of Autoimmunity, 2022, 129, 102826.	6.5	14
71	Deciphering Tumor Niches: Lessons From Solid and Hematological Malignancies. Frontiers in Immunology, 2021, 12, 766275.	4.8	13
72	The guanine exchange factor SWAP70 mediates vGPCR-induced endothelial plasticity. Cell Communication and Signaling, 2015, 13, 11.	6.5	11

#	Article	IF	CITATIONS
73	Serine 165 phosphorylation of SHARPIN regulates the activation of NF-κB. IScience, 2021, 24, 101939.	4.1	11
74	Apelin, the Devil Inside Brain Tumors. Journal of Experimental Neuroscience, 2018, 12, 117906951875968.	2.3	9
75	Critical multiple angiogenic factors secreted by glioblastoma stemâ€like cells underline the need for combinatorial antiâ€angiogenic therapeutic strategies. Proteomics - Clinical Applications, 2013, 7, 79-90.	1.6	7
76	A Molecular Crosstalk between E-cadherin and EGFR Signaling Networks. , 2008, , 131-146.		7
77	Antiangiogenic Compound Axitinib Demonstrates Low Toxicity and Antitumoral Effects against Medulloblastoma. Cancers, 2022, 14, 70.	3.7	7
78	Lysosomes in glioblastoma: pump up the volume. Cell Cycle, 2020, 19, 2094-2104.	2.6	6
79	Participation of the E3-ligase TRIM13 in NF-κB p65 activation and NFAT-dependent activation of c-Rel upon T-cell receptor engagement. International Journal of Biochemistry and Cell Biology, 2014, 54, 217-222.	2.8	5
80	Neutralizing gp130 interferes with endothelial-mediated effects on glioblastoma stem-like cells. Cell Death and Differentiation, 2017, 24, 384-384.	11.2	5
81	Ferrite Nanoparticles for Cancer Hyperthermia Therapy. , 2018, , 638-661.		5
82	Inhibition of mTOR in head and neck cancer cells alters endothelial cell morphology in a paracrine fashion. Molecular Carcinogenesis, 2019, 58, 161-168.	2.7	5
83	Loss of the Metastasis Suppressor NME1, But Not of Its Highly Related Isoform NME2, Induces a Hybrid Epithelial–Mesenchymal State in Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 3718.	4.1	5
84	The LUBAC participates in lysophosphatidic acid-induced NF-κB activation. Cellular Immunology, 2020, 353, 104133.	3.0	4
85	TAK1 lessens the activity of the paracaspase MALT1 during T cell receptor signaling. Cellular Immunology, 2020, 353, 104115.	3.0	4
86	The glycoprotein GP130 governs the surface presentation of the G protein–coupled receptor APLNR. Journal of Cell Biology, 2021, 220, .	5.2	4
87	3D Endothelial Cell Migration. Methods in Molecular Biology, 2018, 1749, 51-58.	0.9	3
88	Assaying the Action of Secreted Semaphorins on Vascular Permeability. Methods in Molecular Biology, 2017, 1493, 417-427.	0.9	2
89	Endothelial Cell-Cell Junctions in Tumor Angiogenesis. , 2019, , 91-119.		2
90	Feeding the hungry enemy: An endothelial recipe for glioma stem cells. Cell Cycle, 2011, 10, 2403-2404.	2.6	1

#	Article	IF	CITATIONS
91	Endothelial Cell-Cell Junctions in Tumor Angiogenesis. , 2018, , 1-29.		ο