Bijandra Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6216855/publications.pdf

Version: 2024-02-01

33	3,402	20	32
papers	citations	h-index	g-index
33	33	33	5685
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanostructured transition metal dichalcogenide electrocatalysts for CO ₂ reduction in ionic liquid. Science, 2016, 353, 467-470.	12.6	778
2	A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529, 377-382.	27.8	633
3	Reduced SnO ₂ Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO ₂ â€intoâ€HCOOH Conversion. Angewandte Chemie - International Edition, 2017, 56, 3645-3649.	13.8	376
4	New trends in the development of heterogeneous catalysts for electrochemical CO 2 reduction. Catalysis Today, 2016, 270, 19-30.	4.4	259
5	Carbon nanotubes/poly(Îμ-caprolactone) composite vapour sensors. Carbon, 2009, 47, 1930-1942.	10.3	157
6	Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Composites Science and Technology, 2014, 104, 18-25.	7.8	142
7	A low-noble-metal W _{1â^x} Ir _x O _{3â^î} water oxidation electrocatalyst for acidic media via rapid plasma synthesis. Energy and Environmental Science, 2017, 10, 2432-2440.	30.8	116
8	Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11, 12658-12681.	3.6	109
9	Conductive bio-Polymer nano-Composites (CPC): Chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing. Talanta, 2010, 81, 908-915.	5.5	101
10	Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film. Chemistry of Materials, 2016, 28, 549-555.	6.7	98
11	Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts, 2020, 10, 495.	3.5	89
12	Vapour sensing with conductive polymer nanocomposites (CPC): Polycarbonate-carbon nanotubes transducers with hierarchical structure processed by spray layer by layer. Sensors and Actuators B: Chemical, 2009, 140, 451-460.	7.8	82
13	Fabrication of ZnO-Fe-MXene Based Nanocomposites for Efficient CO2 Reduction. Catalysts, 2020, 10, 549.	3.5	68
14	Solar hydrogen production from seawater vapor electrolysis. Energy and Environmental Science, 2016, 9, 1725-1733.	30.8	65
15	Photoelectrochemical reduction of CO ₂ to HCOOH on silicon photocathodes with reduced SnO ₂ porous nanowire catalysts. Journal of Materials Chemistry A, 2018, 6, 1736-1742.	10.3	52
16	Heterogeneously catalyzed two-step cascade electrochemical reduction of CO2 to ethanol. Electrochimica Acta, 2018, 274, 1-8.	5.2	51
17	Polyaniline nanoparticle–carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology, 2010, 21, 255501.	2.6	46
18	Reduced SnO ₂ Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO ₂ â€intoâ€HCOOH Conversion. Angewandte Chemie, 2017, 129, 3699-3703.	2.0	41

#	Article	IF	CITATIONS
19	Tailoring the chemo-resistive response of self-assembled polysaccharide-CNT sensors by chain conformation at tunnel junctions. Carbon, 2012, 50, 3627-3634.	10.3	38
20	Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC). Chemosensors, 2014, 2, 26-40.	3.6	27
21	Synthesis, green emission and photosensitivity of Al-doped ZnO film. Microsystem Technologies, 2018, 24, 3069-3073.	2.0	16
22	Simulations of non-monolithic tandem solar cell configurations for electrolytic fuel generation. Journal of Materials Chemistry A, 2017, 5, 13112-13121.	10.3	9
23	Photodegradation of EPDM/MWCNT nanocomposites: Effect of singlet oxygen. Polymer Composites, 2009, 30, 855-860.	4.6	8
24	Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection. Scientific Reports, 2022, 12, 7507.	3.3	8
25	Nanocoral Ag for nonenzymatic glucose detection at extremely low operational potential. Materials Today Communications, 2021, 27, 102261.	1.9	7
26	Enhanced detection of volatile organic compounds (VOCs) by caffeine modified carbon nanotube junctions. Nano Structures Nano Objects, 2020, 24, 100578.	3 . 5	6
27	A Smart Colorimetric Platform for Detection of Methanol, Ethanol and Formic Acid. Sensors, 2022, 22, 618.	3.8	5
28	Tri-molybdenum phosphide (Mo3P) and multi-walled carbon nanotube junctions for volatile organic compounds (VOCs) detection. Applied Physics Letters, 2021, 119, .	3.3	4
29	A Hybrid Photo-Electro Catalytic Conversion of Carbon dioxide Using CuOâ \in MgO Nanocomposite. Topics in Catalysis, 0, , 1.	2.8	3
30	Development and Fabrication of Carbon Nanotube (CNT)/CuO Nanocomposite for Volatile Organic Compounds (VOCs) Gas Sensor Application. Macromolecular Symposia, 2021, 400, 2100202.	0.7	3
31	Photodegradation of ethylene/propylene/polar monomers, co-, and terpolymers. II. Prepared by Ni catalyst systems. Journal of Applied Polymer Science, 2007, 104, 1783-1791.	2.6	2
32	Preface on "Nanomaterials for Energy Conversion and Storage Systems― Emergent Materials, 2021, 4, 387-388.	5 . 7	2
33	Transparent and passive Ta–Si–N thin films barrier layer. MRS Communications, 2021, 11, 950-954.	1.8	1