
Pierluigi Quagliotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6216430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Synthesis, and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in Solar Cells Based on Nanocrystalline TiO2Films. Langmuir, 2002, 18, 952-954.	3.5	238
2	Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand. Inorganic Chemistry, 2006, 45, 4642-4653.	4.0	167
3	A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes and Pigments, 2009, 80, 307-313.	3.7	132
4	Gemini Pyridinium Surfactants:Â Synthesis and Conductometric Study of a Novel Class of Amphiphiles1. Journal of Organic Chemistry, 2003, 68, 7651-7660.	3.2	109
5	Synthesis and Surface and Antimicrobial Properties of Novel Cationic Surfactants. Journal of Organic Chemistry, 2000, 65, 8197-8203.	3.2	105
6	Polymethine Dyes in Hybrid Photovoltaics: Structure–Properties Relationships. European Journal of Organic Chemistry, 2016, 2016, 2244-2259.	2.4	84
7	Symmetric vs. asymmetric squaraines as photosensitisers in mesoscopic injection solar cells: a structure–property relationship study. Chemical Communications, 2012, 48, 2782.	4.1	79
8	Chemicals from Wastes:Â Compost-Derived Humic Acid-like Matter as Surfactant. Environmental Science & Technology, 2006, 40, 1686-1692.	10.0	74
9	Properties of novel azodyes containing powerful acceptor groups and thiophene moiety. Synthetic Metals, 2000, 115, 213-217.	3.9	64
10	Microwave-Assisted Synthesis of Near-Infrared Fluorescent Indole-Based Squaraines. Organic Letters, 2015, 17, 3306-3309.	4.6	62
11	Mixed Micellization Properties of Cationic Monomeric and Gemini Surfactants. Journal of Chemical & Engineering Data, 2010, 55, 4162-4167.	1.9	56
12	Effect of short chain length alcohols on micellization behavior of cationic gemini and monomeric surfactants. Journal of Molecular Liquids, 2012, 172, 81-87.	4.9	56
13	Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances, 2012, 2, 2748.	3.6	56
14	Synthesis and Properties of New Glucocationic Surfactants:Â Model Structures for Marking Cationic Surfactants with Carbohydrates. Journal of Organic Chemistry, 2005, 70, 9857-9866.	3.2	53
15	Reactivity and effects of cyclodextrins in textile dyeing. Dyes and Pigments, 1999, 42, 143-147.	3.7	50
16	Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications. Materials, 2016, 9, 137.	2.9	50
17	Effect of the Counterion on Thermodynamic Properties of Aqueous Micellar Solutions of 1-(3,3,4,4,5,5,6,6,6-Nonafluorohexyl) Pyridinium Halides. Journal of Colloid and Interface Science, 1996, 182, 549-557.	9.4	46
18	Unusual Behavior of the Aqueous Solutions of Gemini Bispyridinium Surfactants: Apparent and Partial Molar Enthalpies of the Dimethanesulfonates. Journal of Physical Chemistry B, 2008, 112, 12312-12317.	2.6	46

#	Article	IF	CITATIONS
19	Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous-ethylene glycol mixture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 61-69.	4.7	43
20	Electrocatalytic reduction of CO ₂ by thiophene-substituted rhenium(<scp>i</scp>) complexes and by their polymerized films. Dalton Transactions, 2016, 45, 14678-14688.	3.3	43
21	Interaction Between Cationic Gemini and Monomeric Surfactants: Micellar and Surface Properties. Journal of Nanofluids, 2013, 2, 316-324.	2.7	42
22	Synthesis and properties of cationic surfactants with tuned hydrophylicity. Journal of Colloid and Interface Science, 2009, 340, 269-275.	9.4	40
23	Effect of polymers and temperature on critical micelle concentration of some gemini and monomeric surfactants. Journal of Chemical Thermodynamics, 2013, 62, 178-185.	2.0	37
24	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Dyes and Pigments, 2009, 82, 124-129.	3.7	36
25	Micellization behavior of [C16-12-C16], 2Brâ^' gemini surfactant in binary aqueous-solvent mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348, 234-239.	4.7	35
26	Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles. Journal of Colloid and Interface Science, 2017, 487, 182-191.	9.4	31
27	Synthesis and Characterization of Highly Fluorinated Gemini Pyridinium Surfactants. European Journal of Organic Chemistry, 2009, 2009, 3167-3177.	2.4	30
28	Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5061-5073.	6.7	29
29	Electronic Effects of Substituents on fac-M(bpy-R)(CO)3 (M = Mn, Re) Complexes for Homogeneous CO2 Electroreduction. Frontiers in Chemistry, 2019, 7, 417.	3.6	28
30	First Evaluation of the Thermodynamic Properties for Spheres to Elongated Micelles Transition of Some Propanediyl-α,ï‰-bis(dimethylalkylammonium bromide) Surfactants in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 1744-1749.	2.6	27
31	Nonviral Gene Delivery: Gemini Bispyridinium Surfactant-Based DNA Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 13183-13191.	2.6	27
32	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Part 2. Dyes and Pigments, 2009, 83, 396-402.	3.7	25
33	Physicochemical characterization of cationic gemini surfactants and their effect on reaction kinetics in ethylene glycol–water medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411, 1-11.	4.7	25
34	Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	4.5	24
35	Effect of cationic gemini surfactants on the hydrolysis of carboxylate and phosphate esters using hydroxamate ions. Colloid and Polymer Science, 2008, 286, 293-303.	2.1	22
36	Effects of additives on the dyeing of nylon-6 with dyes containing hydrophobic and hydrophilic moieties. Dyes and Pigments, 2000, 47, 177-188.	3.7	21

PIERLUIGI QUAGLIOTTO

#	Article	IF	CITATIONS
37	Upgrading biomass wastes in chemical technology. Humic acidâ€like matter isolated from compost as chemical auxiliary for textile dyeing. Journal of Chemical Technology and Biotechnology, 2007, 82, 939-948.	3.2	20
38	Micellization Behavior of Cationic Gemini Surfactants in Aqueousâ€Ethylene Glycol Solution. Journal of Surfactants and Detergents, 2011, 14, 555-562.	2.1	20
39	4-Sulfophenylphosphonic Acid:Â A Novel Precursor to Fabricate Polyfunctional Acid Materials. Chemistry of Materials, 2007, 19, 2671-2678.	6.7	19
40	Fluorescence anisotropy analysis of protein–antibody interaction. Dyes and Pigments, 2009, 83, 225-229.	3.7	18
41	Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships. Energies, 2021, 14, 2279.	3.1	18
42	Thermodynamic properties of aqueous micellar solutions of N-(1H,1H,2H,2H perfluorooctyl)pyridinium chloride and N-(1H,1H,2H,2H perfluorodecyl)pyridinium chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 84, 59-70.	4.7	17
43	Kinetic study on effect of novel cationic dimeric surfactants for the cleavage of carboxylate ester. Journal of Physical Organic Chemistry, 2013, 26, 626-631.	1.9	16
44	Nanosized TiO2 is internalized by dorsal root ganglion cells and causes damage via apoptosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1309-1319.	3.3	16
45	Effect of the Counterion on Thermodynamic Properties of Aqueous Micellar Solutions of 1-(3,3,4,4,5,5,6,6,6-Nonafluorohexyl) Pyridinium Halides. Journal of Colloid and Interface Science, 1996, 184, 147-154.	9.4	15
46	Thermodynamics and Biological Properties of the Aqueous Solutions of New Glucocationic Surfactants. Journal of Physical Chemistry B, 2008, 112, 9360-9370.	2.6	14
47	Catalytic hydrolysis of phosphodiesters by nucleophilic ions in gemini micellar media. Journal of Physical Organic Chemistry, 2014, 27, 613-621.	1.9	14
48	Kinetic evidence for the solubilization of pyridine-2-azo-p-dimethylaniline in alkanediyl-α,ï‰-bis(dimethylcetylammonium nitrate) surfactants. Role of the spacer chain length. New Journal of Chemistry, 2004, 28, 793-799.	2.8	12
49	Synthesis, Physicochemical Characterization, and Interaction with DNA of Longâ€Alkylâ€Chain Gemini Pyridinium Surfactants. ChemPlusChem, 2015, 80, 952-962.	2.8	12
50	Probing interfacial properties by optical second-harmonic generation. Optics and Lasers in Engineering, 2002, 37, 601-610.	3.8	11
51	Is the counterion responsible for the unusual thermodynamic behaviour of the aqueous solutions of gemini bispyridinium surfactants?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 249-254.	4.7	11
52	Adsorption of 1-alkyl-4-methylpyridinium salts at solid-liquid and water-air interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 135-144.	4.7	9
53	Voltammetric behaviour of heterocyclic systems. Pyridylâ€substituted benzimidazoles, benzoxazoles and benzothiazoles. Journal of Heterocyclic Chemistry, 1997, 34, 1479-1485.	2.6	9
54	Solution Thermodynamics of highly fluorinated gemini bispyridinium surfactants for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 236-242.	4.7	9

Pierluigi Quagliotto

#	Article	IF	CITATIONS
55	DEVELOPMENTS IN DYEING TECHNOLOGY BASED ON MICROEMULSION SYSTEMS. Journal of Dispersion Science and Technology, 1995, 16, 51-68.	2.4	8
56	Chemichromic azodye from 2,4-dinitrobenzenediazonium o-benzenedisulfonimide and γ-acid for monitoring blood parameters: structural study and synthesis optimisation. Dyes and Pigments, 2002, 54, 131-140.	3.7	8
57	Structural characterisation of Nitrazine Yellow by NMR spectroscopy. Dyes and Pigments, 2003, 57, 87-95.	3.7	8
58	Advances in Synthetic Methods for the Preparation of Poly(3- hexylthiophene) (P3HT). Letters in Organic Chemistry, 2018, 15, 991-1006.	0.5	8
59	Adsorption of cationic ?gemini? surfactants at the TiO2/solution interface. Surface and Interface Analysis, 2002, 34, 652-656.	1.8	7
60	Thermodynamic properties of aqueous micellar solutions of some new acetylated gluco-cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 129-136.	4.7	7
61	Product yield, quality and energy in the hydrolysis of urban bio-waste compost from laboratory-scale runs. Journal of Cleaner Production, 2018, 170, 1484-1492.	9.3	7
62	High Molecular Weight Biosurfactants from Mild Chemical Reactions of Fermented Municipal Biowastes. ChemistrySelect, 2020, 5, 2564-2576.	1.5	7
63	Spectral behaviour of linked heterocyclic systems and related dyes. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1379-1393.	0.1	6
64	Novel heterocyclic ligands with tuned hydrophobicity. Journal of Heterocyclic Chemistry, 1996, 33, 1195-1200.	2.6	6
65	Novel azobenzene derivatives containing a glucopyranoside moiety. Part I: synthesis, characterisation and mutagenic properties. Dyes and Pigments, 2000, 46, 29-36.	3.7	6
66	2â€(4â€methylpyridinâ€2â€yl)â€1 <i>H</i> â€benzimidazole derivatives. Part I. Xâ€Ray structural analysis. Journal Heterocyclic Chemistry, 2003, 40, 129-133.	of 2.6	6
67	Micellization of Gemini Surfactants in Polymer Solutions. Tenside, Surfactants, Detergents, 2010, 47, 162-165.	1.2	6
68	THE ROLE OF COSURFACTANT AND OIL IN THE DYEING OF CELLULOSE - ACETATE. Journal of Dispersion Science and Technology, 1993, 14, 17-33.	2.4	5
69	Thermodynamic Properties of the Aqueous Solution of Potassium Salts of Some 4-((Alkylcarbonyl)amino)-2-hydroxybenzoic Acids at 298 and 313 K. Journal of Colloid and Interface Science, 2002, 255, 410-416.	9.4	5
70	2â€(4â€methylpyridinâ€2â€yl)â€1 <i>H</i> â€benzimidazole derivatives. Part II, ^l H nmr characterizati Journal of Heterocyclic Chemistry, 2003, 40, 649-654.	ion. 2.6	5
71	Insights on a Hierarchical MFI Zeolite: A Combined Spectroscopic and Catalytic Approach for Exploring the Multilevel Porous System Down to the Active Sites. ACS Applied Materials & Interfaces, 2021, 13, 49114-49127.	8.0	5
72	Relationships between spectroscopic and voltammetric parameters of azobenzene dyes. Dyes and Pigments, 1992, 20, 1-11.	3.7	4

PIERLUIGI QUAGLIOTTO

#	Article	IF	CITATIONS
73	Heterocyclic intermediates for the synthesis of disperse and cationic dyes. Journal of Heterocyclic Chemistry, 1992, 29, 835-839.	2.6	4
74	Microcrystalline cellulose suspensions: effects on the surface tension at the air–water boundary. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 176, 239-244.	4.7	4
75	Ozonization to Upgrade Wasteâ€Đerived Soluble Lignin‣ike Substances to Higher Value Products. ChemistrySelect, 2016, 1, 1613-1629.	1.5	4
76	Water based surfactant-assisted synthesis of thienylpyridines and thienylbipyridine intermediates. Dyes and Pigments, 2017, 137, 468-479.	3.7	4
77	Pyridyl-substituted azobenzene disperse dyes. Dyes and Pigments, 1992, 19, 291-304.	3.7	3
78	Disperse and cationic azo dyes from heterocyclic intermediates. Dyes and Pigments, 1992, 19, 69-79.	3.7	3
79	Assembled systems [Xâ€azolopyridine][quinoline]. Bases and salts. Journal of Heterocyclic Chemistry, 1992, 29, 185-192.	2.6	3
80	Organosulphur Phosphorus Acid Compounds. Part 7. Preparation and Analytical Identification of Difluorobenzylphosphono-Sulfonic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 134, 99-108.	1.6	3
81	Highly Photoactive Polythiophenes Obtained by Electrochemical Synthesis from Bipyridine-Containing Terthiophenes. Energies, 2019, 12, 341.	3.1	3
82	Thermodynamic properties of aqueous micellar solutions of 1-methyl-4-octylpyridinium halides. Thermochimica Acta, 2003, 397, 199-208.	2.7	2
83	Improved Synthesis of a Terthiophene-Based Monomeric Ligand That Forms a Highly Active Polymer for the Carbon Dioxide Reduction. Letters in Organic Chemistry, 2017, 14, .	0.5	2
84	Mild Hydrogenation of Urban Biowaste Hydrolysates to Biopolymers with Improved Properties ChemistrySelect, 2019, 4, 4168-4177.	1.5	1
85	Solid-Phase Synthesis of Asymmetric Cyanine Dyes. Current Organic Chemistry, 2021, 25, 1739-1754.	1.6	1
86	Perovskite films and solar cells on PET substrates for space applications: stability study under neutron irradiation. , 0, , .		0