Zhi-Qiang Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6216291/publications.pdf

Version: 2024-02-01

236612 288905 1,999 91 25 40 citations h-index g-index papers 93 93 93 2206 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in the Discovery and Development of Marine Microbial Natural Products. Marine Drugs, 2013, 11, 700-717.	2.2	132
2	CRISPR-Cas9 $<$ sup $>$ D10A $<$ /sup $>$ Nickase-Assisted Genome Editing in Lactobacillus casei. Applied and Environmental Microbiology, 2017, 83, .	1.4	128
3	Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiology, 2013, 13, 71.	1.3	115
4	Cholesterol-lowering potentials of <i>Lactobacillus </i> strain over expression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food and Function, 2019, 10, 1684-1695.	2.1	67
5	Characterization and selection of Lactobacillus brevis starter for nitrite degradation of Chinese pickle. Food Control, 2017, 78, 126-131.	2.8	61
6	Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. Journal of Dairy Science, 2019, 102, 4925-4934.	1.4	60
7	Lactic Acid Bacteria With Antioxidant Activities Alleviating Oxidized Oil Induced Hepatic Injury in Mice. Frontiers in Microbiology, 2018, 9, 2684.	1.5	58
8	<i>Lactobacillus plantarum</i> AR501 Alleviates the Oxidative Stress of Dâ€Galactoseâ€Induced Aging Mice Liver by Upregulation of Nrf2â€Mediated Antioxidant Enzyme Expression. Journal of Food Science, 2018, 83, 1990-1998.	1.5	58
9	Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli. Cell Research, 2016, 26, 258-261.	5 . 7	57
10	Characterization of Streptomyces padanus JAU4234, a Producer of Actinomycin X ₂ , Fungichromin, and a New Polyene Macrolide Antibiotic. Applied and Environmental Microbiology, 2012, 78, 589-592.	1.4	54
11	Improvement of flavor profiles in Chinese rice wine by creating fermenting yeast with superior ethanol tolerance and fermentation activity. Food Research International, 2018, 108, 83-92.	2.9	52
12	Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. Journal of Functional Foods, 2020, 67, 103854.	1.6	49
13	Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97, 8057-8067.	1.7	48
14	Structural characterization and rheological properties of β-D-glucan from hull-less barley (Hordeum) Tj ETQq0 0 (0 rgBT /Οι	verlock 10 Tf 5
15	Antrodin A from <i>Antrodia camphorata</i> modulates the gut microbiome and liver metabolome in mice exposed to acute alcohol intake. Food and Function, 2021, 12, 2925-2937.	2.1	44
16	Characterization of a yogurt-quality improving exopolysaccharide from Streptococcus thermophilus AR333. Food Hydrocolloids, 2018, 81, 220-228.	5.6	42
17	Quantitative Design of Regulatory Elements Based on High-Precision Strength Prediction Using Artificial Neural Network. PLoS ONE, 2013, 8, e60288.	1.1	39
18	Comparison of <i>gal</i> ê <i>lac</i> operons in wild-type galactose-positive and -negative <i>Streptococcus thermophilus</i> by genomics and transcription analysis. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 751-758.	1.4	36

#	Article	IF	CITATIONS
19	Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. Journal of Bioscience and Bioengineering, 2008, 105, 409-413.	1.1	35
20	Diterpenoid UDP-Glycosyltransferases from Chinese Sweet Tea and Ashitaba Complete the Biosynthesis of Rubusoside. Molecular Plant, 2018, 11, 1308-1311.	3.9	34
21	Antrodin A from mycelium of Antrodia camphorata alleviates acute alcoholic liver injury and modulates intestinal flora dysbiosis in mice. Journal of Ethnopharmacology, 2020, 254, 112681.	2.0	32
22	Characterization of a Panel of Strong Constitutive Promoters from <i>Streptococcus thermophilus</i> for Fine-Tuning Gene Expression. ACS Synthetic Biology, 2019, 8, 1469-1472.	1.9	31
23	In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea. Biotechnology Letters, 2013, 35, 1475-1479.	1.1	29
24	Efficient extraction of intracellular reduced glutathione from fermentation broth of Saccharomyces cerevisiae by ethanol. Bioresource Technology, 2009, 100, 1011-1014.	4.8	25
25	Diversity and bioprospecting of culturable actinomycetes from marine sediment of the Yellow Sea, China. Archives of Microbiology, 2015, 197, 299-309.	1.0	25
26	RQ feedback control for simultaneous improvement of GSH yield and GSH content in Saccharomyces cerevisiae T65. Enzyme and Microbial Technology, 2010, 46, 598-602.	1.6	24
27	Carrageenan polysaccharides and oligosaccharides with distinct immunomodulatory activities in murine microglia BV-2 cells. International Journal of Biological Macromolecules, 2018, 120, 633-640.	3.6	24
28	Characterization of a cryptic plasmid isolated from Lactobacillus casei CP002616 and construction of shuttle vectors based on its replicon. Journal of Dairy Science, 2018, 101, 2875-2886.	1.4	23
29	Relationship Between Putative eps Genes and Production of Exopolysaccharide in Lactobacillus casei LC2W. Frontiers in Microbiology, 2018, 9, 1882.	1.5	23
30	Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis. Journal of Dairy Science, 2020, 103, 161-165.	1.4	22
31	Optimization of medium composition for actinomycin X2 production by Streptomyces spp JAU4234 using response surface methodology. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 729-734.	1.4	21
32	Proteolysis, lipolysis, texture and sensory properties of cheese ripened by Monascus fumeus. Food Research International, 2020, 137, 109657.	2.9	21
33	The Mechanism of Antifungal Action of a New Polyene Macrolide Antibiotic Antifungalmycin 702 from Streptomyces padanus JAU4234 on the Rice Sheath Blight Pathogen Rhizoctonia solani. PLoS ONE, 2013, 8, e73884.	1.1	20
34	Comparison of oenological property, volatile profile, and sensory characteristic of Chinese rice wine fermented by different starters during brewing. International Journal of Food Properties, 2017, 20, S3195-S3211.	1.3	20
35	Structure characterization of a pyruvated exopolysaccharide from Lactobacillus plantarum AR307. International Journal of Biological Macromolecules, 2021, 178, 113-120.	3.6	20
36	Short communication: Improving the activity of bile salt hydrolases in Lactobacillus casei based on in silico molecular docking and heterologous expression. Journal of Dairy Science, 2017, 100, 975-980.	1.4	19

#	Article	IF	Citations
37	Human-origin <i>Lactobacillus salivarius </i> AR809 protects against immunosuppression in <i>S. aureus </i> induced pharyngitis <i>via </i> Akt-mediated NF-κB and autophagy signaling pathways. Food and Function, 2020, 11, 270-284.	2.1	19
38	Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation. International Journal of Biological Macromolecules, 2021, 178, 263-269.	3.6	18
39	Improving heterologous polyketide production in Escherichia coli by transporter engineering. Applied Microbiology and Biotechnology, 2015, 99, 8691-8700.	1.7	17
40	Probiotics Interact With Lipids Metabolism and Affect Gut Health. Frontiers in Nutrition, 2022, 9, .	1.6	16
41	Bile salt hydrolase-overexpressing Lactobacillus strains can improve hepatic lipid accumulation in vitro in an NAFLD cell model. Food and Nutrition Research, 2020, 64, .	1.2	15
42	On-line specific growth rate control for improving reduced glutathione production in Saccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 2015, 20, 887-893.	1.4	13
43	Construction of polyketide overproducing <i>Escherichia coli</i> strains via synthetic antisense RNAs based on in silico fluxome analysis and comparative transcriptome analysis. Biotechnology Journal, 2016, 11, 530-541.	1.8	13
44	Enhanced production of avermectin by deletion of type III polyketide synthases biosynthetic cluster <i>rpp</i> in <i>Streptomyces avermitilis</i> Letters in Applied Microbiology, 2016, 63, 384-390.	1.0	13
45	Purification and characteristics of a new milk-clotting enzyme from Bacillus licheniformis BL312. LWT - Food Science and Technology, 2019, 113, 108276.	2.5	13
46	Draft Genome Sequence of the Marine Streptomyces sp. Strain AA1529, Isolated from the Yellow Sea. Journal of Bacteriology, 2012, 194, 5474-5475.	1.0	12
47	Specific bile salt hydrolase genes in Lactobacillus plantarum AR113 and relationship with bile salt resistance. LWT - Food Science and Technology, 2021, 145, 111208.	2.5	12
48	Draft Genome Sequence of Marine-Derived Streptomyces sp. Strain AA0539, Isolated from the Yellow Sea, China. Journal of Bacteriology, 2012, 194, 6622-6623.	1.0	11
49	Enhancement of antroquinonol production during batch fermentation using pH control coupled with an oxygen vector. Journal of the Science of Food and Agriculture, 2019, 99, 449-456.	1.7	11
50	The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review. Molecular Biology Reports, 2020, 47, 9149-9157.	1.0	11
51	Synthetic Biology Triggers New Era of Antibiotics Development. Sub-Cellular Biochemistry, 2012, 64, 95-114.	1.0	9
52	Exploiting exogenous MEP pathway genes to improve the downstream isoprenoid pathway effects and enhance isoprenoid production in Escherichia coli. Process Biochemistry, 2015, 50, 24-32.	1.8	9
53	Adhesion to pharyngeal epithelium and modulation of immune response: Lactobacillus salivarius AR809, a potential probiotic strain isolated from the human oral cavity. Journal of Dairy Science, 2019, 102, 6738-6749.	1.4	9
54	Enhanced Antioxidant Activity in Streptococcus thermophilus by High-Level Expression of Superoxide Dismutase. Frontiers in Microbiology, 2020, 11, 579804.	1.5	9

#	Article	IF	CITATIONS
55	CRISPR–Cas-mediated gene editing in lactic acid bacteria. Molecular Biology Reports, 2020, 47, 8133-8144.	1.0	9
56	LysR Family Regulator LttR Controls Production of Conjugated Linoleic Acid in Lactobacillus plantarum by Directly Activating the <i>cla</i> Operon. Applied and Environmental Microbiology, 2021, 87, .	1.4	9
57	Oxygen uptake rate regulation during cell growth phase for improving avermectin B1a batch fermentation on a pilot scale (2Âm3). World Journal of Microbiology and Biotechnology, 2011, 27, 2639-2644.	1.7	8
58	Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli. Biotechnology Letters, 2014, 36, 1021-1027.	1.1	8
59	The use of a simple flow cytometry method for rapid detection of spores in probiotic Bacillus licheniformis-containing tablets. Food Science and Biotechnology, 2017, 26, 167-171.	1.2	8
60	Functional analysis and heterologous expression of bifunctional glutathione synthetase from Lactobacillus. Journal of Dairy Science, 2018, 101, 6937-6945.	1.4	8
61	Fermentation conditions of serine/alkaline milk-clotting enzyme production by newly isolated Bacillus licheniformis BL312. Annals of Microbiology, 2019, 69, 1289-1300.	1.1	8
62	Single-plasmid systems based on CRISPR-Cas9 for gene editing in Lactococcus lactis. Journal of Dairy Science, 2021, 104, 10576-10585.	1.4	8
63	Short communication: Dynamic changes in bacterial diversity during the production of powdered infant formula by PCR-DGGE and high-throughput sequencing. Journal of Dairy Science, 2020, 103, 5972-5977.	1.4	8
64	Endophytes in the plant Huperzia serrata: fungal diversity and discovery of a new pentapeptide. Archives of Microbiology, 2015, 197, 411-418.	1.0	7
65	High-Level Expression and Substrate-Binding Region Modification of a Novel BL312 Milk-Clotting Enzyme To Enhance the Ratio of Milk-Clotting Activity to Proteolytic Activity. Journal of Agricultural and Food Chemistry, 2019, 67, 13684-13693.	2.4	7
66	RNAâ€6eq transcriptomic analyses ofAntrodia camphoratato determine antroquinonol and antrodin C biosynthetic mechanisms in thein situextractive fermentation. Journal of the Science of Food and Agriculture, 2020, 100, 4252-4262.	1.7	7
67	Construction of a CRISPR/nCas9-assisted genome editing system for exopolysaccharide biosynthesis in Streptococcus thermophilus. Food Research International, 2022, 158, 111550.	2.9	6
68	Isolation of biogenic amineâ€negative lactic acid bacteria for Chinese rice wine fermentation based on molecular marker reverse screening. Journal of the Science of Food and Agriculture, 2020, 100, 3257-3261.	1.7	5
69	Enhancement of antroquinonol production via the overexpression of 4-hydroxybenzoate polyprenyltransferase biosynthesis-related genes in Antrodia cinnamomea. Phytochemistry, 2021, 184, 112677.	1.4	5
70	Comprehensive transcriptomic and proteomic analyses of antroquinonol biosynthetic genes and enzymes in Antrodia camphorata. AMB Express, 2020, 10, 136.	1.4	5
71	Enhancement of triterpene production via in situ extractive fermentation of <i>Sanghuangporus vaninii</i> YCâ€1. Biotechnology and Applied Biochemistry, 2022, 69, 2561-2572.	1.4	5
72	Effects of different carbon sources on metabolic profiles of carbohydrates in <i>Streptococcus thermophilus</i> during fermentation. Journal of the Science of Food and Agriculture, 2022, 102, 4820-4829.	1.7	5

#	Article	IF	CITATIONS
73	CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus. Journal of Dairy Science, 2022, 105, 6499-6512.	1.4	5
74	Rapid isolation of exopolysaccharideâ€producing <i>Streptococcus thermophilus</i> based on molecular marker screening. Journal of the Science of Food and Agriculture, 2022, 102, 862-867.	1.7	4
75	Anti-osteoporotic potential of Lactobacillus plantarum AR237 and AR495 in ovariectomized mice. Journal of Functional Foods, 2021, 87, 104762.	1.6	4
76	Reasons for the differences in biotransformation of conjugated linoleic acid by Lactobacillus plantarum. Journal of Dairy Science, 2021, 104, 11466-11473.	1.4	4
77	Effects and mechanism of sucrose on retrogradation, freeze–thaw stability, and texture of corn starch–tamarind seed polysaccharide complexes. Journal of Food Science, 2022, 87, 623-635.	1.5	4
78	The Arginine Repressor ArgR ₂ Controls Conjugated Linoleic Acid Biosynthesis by Activating the <i>cla</i> Operon in <i>Lactiplantibacillus plantarum</i> Microbiology Spectrum, 2022, 10, .	1.2	4
79	Short communication: Genome-wide identification of new reference genes for reverse-transcription quantitative PCR in Streptococcus thermophilus based on RNA-sequencing analysis. Journal of Dairy Science, 2020, 103, 10001-10005.	1.4	3
80	Genetic evidence for the requirements of antroquinonol biosynthesis by <i>Antrodia camphorata</i> during liquid-state fermentation. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	3
81	Metagenomic-Guided Antibiotics Discovery. Clinical Microbiology (Los Angeles, Calif), 2012, 02, .	0.2	2
82	Significant expression of a C hinese scorpion peptide, B m K 1, in E scherichia coli through promoter engineering and gene dosage strategy. Biotechnology and Applied Biochemistry, 2014, 61, 466-473.	1.4	2
83	Highâ€efficiency transformation of <i>Streptococcus thermophilus</i> using electroporation. Journal of the Science of Food and Agriculture, 2021, 101, 6578-6585.	1.7	2
84	Genes encoding bile salt hydrolase differentially affect adhesion of Lactiplantibacillus plantarum AR113. Journal of the Science of Food and Agriculture, 2021, , .	1.7	2
85	Bioprospecting of Uncultured Microorganisms: The Dawning of Antibiotic Discovery. Clinical Microbiology (Los Angeles, Calif), 2016, 05, .	0.2	2
86	Anti-Osteoporotic Effect of Lactobacillus brevis AR281 in an Ovariectomized Mouse Model Mediated by Inhibition of Osteoclast Differentiation. Biology, 2022, 11, 359.	1.3	2
87	Use of a Novel Report Protein to Study the Secretion Signal of Flagellin in Bacillus subtilis. Current Microbiology, 2016, 73, 242-247.	1.0	1
88	Recent Research Advances in Small Regulatory RNAs in Streptococcus. Current Microbiology, 2021, 78, 2231-2241.	1.0	1
89	Bioprospecting of Uncultured Marine Microorganisms Needs More New Cultivation Techniques for Natural Products Discovery. Journal of Marine Biology and Aquaculture, 2015, 1, 1-2.	0.1	1
90	Determination of the regulatory network and function of the lysR-type transcriptional regulator of Lactiplantibacillus plantarum, LpLttR. Microbial Cell Factories, 2022, 21, 65.	1.9	1

#	Article	IF	CITATIONS
91	Meeting report: ACBâ€2011 Shanghai – "Biotechnology for Better Life― Biotechnology Journal, 2011, 6, 1305-1307.	1.8	0