Qibing Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6216153/publications.pdf Version: 2024-02-01

OIRING CHANG

#	Article	IF	CITATIONS
1	Synthesis and chromatic properties of high color performance Prx-ZrSiO4 (xÂ=Â0–0.1) yellow pigment. Journal of Alloys and Compounds, 2022, 891, 161932.	5.5	14
2	Synthesis and characterization of Fe/Mn co-doped CuCr2O4 black pigment with high near-infrared reflectance. Solar Energy, 2022, 234, 240-250.	6.1	12
3	Synthesis and chromatic properties of V-doped and V/Y-codoped ZrO2 yellow pigments. Journal of Alloys and Compounds, 2021, 856, 157397.	5.5	13
4	Phase composition, microstructure, and properties of ceramic tile prepared using ceramic polishing waste as raw material. International Journal of Applied Ceramic Technology, 2021, 18, 1052-1062.	2.1	6
5	Research on the low-temperature synthesis of cobalt aluminum spinel type blue pigments. Journal of Alloys and Compounds, 2021, 864, 158625.	5.5	7
6	Synthesis of high color performance V-ZrSiO4 blue pigment with low doping amount via inorganic sol–gel route. Advanced Powder Technology, 2021, 32, 3355-3363.	4.1	7
7	Ultrafine V-ZrSiO4 pigment prepared by a bottom-up approach: Particle size evolution and chromatic properties. Advanced Powder Technology, 2021, 32, 3934-3942.	4.1	3
8	Preparation of Ultrafine Spherical Pr-ZrSiO4 Pigment by Sol-Gel-Microemulsion Method. Silicon, 2020, 12, 585-594.	3.3	11
9	High-performance spherical urchin-like CoAl2O4 pigments prepared via microemulsion-hydrothermal-precipitation method. Advanced Powder Technology, 2020, 31, 1290-1301.	4.1	22
10	Synthesis, characterization and application of submicron ZrSiO4 powder via sol-gel-microemulsion-hydrothermal method. Journal of Alloys and Compounds, 2020, 828, 154332.	5.5	27
11	Preparation of Ceramic Ultrafiltration Membrane by Nano-Metal Oxides Modified. IOP Conference Series: Earth and Environmental Science, 2019, 252, 022030.	0.3	0
12	Chromatic study on the coloration mechanism of iron zircon pigment. Materials Chemistry and Physics, 2019, 235, 121740.	4.0	7
13	Preparation of Fly Ash-Based Porous Ceramic with Alumina as the Pore-Forming Agent. Ceramics, 2019, 2, 286-295.	2.6	12
14	Relationship between the colour and particle size of the ultrafine V-ZrSiO ₄ and Pr-ZrSiO ₄ pigments and their mixture. Materials Research Express, 2019, 6, 075214.	1.6	4
15	Preparation of a High-Performance Porous Ceramic Membrane by a Two-Step Coating Method and One-Step Sintering. Applied Sciences (Switzerland), 2019, 9, 52.	2.5	16
16	In Situ Formation of Er0.4Bi1.6O3 Protective Layer at Cobaltite Cathode/Y2O3–ZrO2 Electrolyte Interface under Solid Oxide Fuel Cell Operation Conditions. ACS Applied Materials & Interfaces, 2018, 10, 40549-40559.	8.0	31
17	Preparation of Zircon-Encapsulated Carbon Black Ceramic Pigment Using the Collapsed Mesoporous-Structure. Silicon, 2018, 10, 2253-2262.	3.3	9
18	A Comparative Study on the Addition Methods of TiO2 Sintering Aid to the Properties of Porous Alumina Membrane Support. Membranes, 2018, 8, 49.	3.0	14

QIBING CHANG

#	Article	IF	CITATIONS
19	Preparation and Modification of Ceramic Membrane and Its Application in Oil/Water Wastewater Treatment. Springer Proceedings in Energy, 2018, , 823-830.	0.3	о
20	Microstructure evolution and properties of YSZ hollow fiber microfiltration membranes prepared at different suspension solid content for water treatment. Desalination and Water Treatment, 2016, 57, 21273-21285.	1.0	2
21	Effect of hydrophilic modification with nano-titania and operation modes on the oil–water separation performance of microfiltration membrane. Desalination and Water Treatment, 2016, 57, 4788-4795.	1.0	13
22	Ultrafine CoAl2O4 ceramic pigment prepared by Pechini-sacrificial agent method. Materials Letters, 2016, 173, 64-67.	2.6	38
23	Application of integrated membrane technology in purification of chlorogenic acid. Desalination and Water Treatment, 2015, 55, 2165-2170.	1.0	2
24	Influences of internal coagulant composition on microstructure and properties of porous YSZ hollow fibre membranes for water treatment. Separation and Purification Technology, 2015, 147, 337-345.	7.9	23
25	Evidence of ZrO2 sol–gel transition by gelation time and viscosity. Journal of Sol-Gel Science and Technology, 2015, 73, 208-214.	2.4	10
26	The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 2015, 476, 200-204.	8.2	181
27	Preparation and application of positively charged quaternized chitosan/PEI composite nanofiltration membranes. Desalination and Water Treatment, 2014, 52, 5790-5795.	1.0	13
28	Encapsulated carbon black prepared by sol–gel-spraying: A new black ceramic pigment. Journal of the European Ceramic Society, 2014, 34, 3151-3157.	5.7	36
29	Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. Journal of Membrane Science, 2014, 456, 128-133.	8.2	204
30	Preparation of microfiltration membrane supports using coarse alumina grains coated by nano TiO2 as raw materials. Journal of the European Ceramic Society, 2014, 34, 4355-4361.	5.7	35
31	Effect of particle size distribution of raw powders on pore size distribution and bending strength of Al2O3 microfiltration membrane supports. Journal of the European Ceramic Society, 2014, 34, 3819-3825.	5.7	52
32	Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Separation and Purification Technology, 2010, 75, 243-248.	7.9	200
33	Formation mechanism of zirconia nano-particles containing pores prepared via sol–gel-hydrothermal method. Advanced Powder Technology, 2010, 21, 425-430.	4.1	25
34	Hydrophilic modification of Al2O3 microfiltration membrane with nano-sized γ-Al2O3 coating. Desalination, 2010, 262, 110-114.	8.2	52
35	Preparation and characterization of unique zirconia crystals within pores via a sol–gel-hydrothermal method. Advanced Powder Technology, 2009, 20, 371-374.	4.1	29
36	Preparation of crack-free ZrO membrane on AlO support with ZrO?AlO composite intermediate layers. Journal of Membrane Science, 2005, 250, 105-111.	8.2	19

#	Article	IF	CITATIONS
37	Effect of Type and Content of Pore-forming Agents on Properties of Porous Alumina Membrane Support. IOP Conference Series: Materials Science and Engineering, 0, 452, 022047.	0.6	5