Susan J Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6216130/publications.pdf Version: 2024-02-01

SUSAN L ROOWN

#	Article	IF	CITATIONS
1	Molecular detection of SARSâ€CoVâ€2 strains and differentiation of Delta variant strains. Transboundary and Emerging Diseases, 2022, 69, 2879-2889.	3.0	25
2	Molecular detection of SARS oVâ€⊋ and differentiation of Omicron and Delta variant strains. Transboundary and Emerging Diseases, 2022, 69, .	3.0	14
3	Undergraduate Virtual Engagement in Community Genome Annotation Provides Flexibility to Overcome Course Disruptions. Journal of Microbiology and Biology Education, 2021, 22, .	1.0	2
4	High contiguity de novo genome assembly and DNA modification analyses for the fungus fly, Sciara coprophila, using single-molecule sequencing. BMC Genomics, 2021, 22, 643.	2.8	17
5	Genome-wide oscillations in G + C density and sequence conservation. Genome Research, 2021, 31, 2050-2057.	5.5	1
6	Reinterpretation of â€~sperm pump' or â€~sperm syringe' function with notes on other male internal reproductive organs in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Arthropod Structure and Development, 2020, 54, 100915.	1.4	0
7	A quick guide for student-driven community genome annotation. PLoS Computational Biology, 2019, 15, e1006682.	3.2	33
8	Degenerative Expansion of a Young Supergene. Molecular Biology and Evolution, 2019, 36, 553-561.	8.9	42
9	Expression of teneurin-m/odd Oz during segmentation in the beetle Tribolium castaneum. Gene Expression Patterns, 2019, 31, 26-31.	0.8	2
10	Isolation of High Molecular Weight DNA from Insects. Methods in Molecular Biology, 2019, 1858, 27-32.	0.9	2
11	Asian citrus psyllid stylet morphology and applicability to the model for inter-instar stylet replacement in the potato psyllid. Arthropod Structure and Development, 2018, 47, 542-551.	1.4	5
12	Gender Bias in Human Systemic Lupus Erythematosus: A Problem of Steroid Receptor Action?. Frontiers in Immunology, 2018, 9, 611.	4.8	28
13	The transcriptome of the lone star tick, Amblyomma americanum, reveals molecular changes in response to infection with the pathogen, Ehrlichia chaffeensis. Journal of Asia-Pacific Entomology, 2018, 21, 852-863.	0.9	5
14	Speed regulation of genetic cascades allows for evolvability in the body plan specification of insects. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8646-E8655.	7.1	44
15	Membrane topology and identification of key residues of <i>Ea</i> DAcT, a plant <scp>MBOAT</scp> with unusual substrate specificity. Plant Journal, 2017, 92, 82-94.	5.7	20
16	Regulation and function of odd-paired in Tribolium segmentation. Development Genes and Evolution, 2017, 227, 309-317.	0.9	13
17	Improved annotation of the insect vector of citrus greening disease: biocuration by a diverse genomics community. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	3.0	62
18	Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus). BMC Biology, 2017, 15, 110.	3.8	53

#	Article	IF	CITATIONS
19	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154
20	Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. BMC Evolutionary Biology, 2015, 15, 208.	3.2	36
21	Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genomics, 2015, 16, 734.	2.8	103
22	Editorial overview: Insect genomics: How to sequence five thousand insect genomes?. Current Opinion in Insect Science, 2015, 7, iv-v.	4.4	3
23	A Massive Expansion of Effector Genes Underlies Gall-Formation in the Wheat Pest Mayetiola destructor. Current Biology, 2015, 25, 613-620.	3.9	171
24	The Genome and Methylome of a Beetle with Complex Social Behavior, <i>Nicrophorus vespilloides</i> (Coleoptera: Silphidae). Genome Biology and Evolution, 2015, 7, 3383-3396.	2.5	87
25	Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression. Nucleic Acids Research, 2014, 42, 10321-10330.	14.5	24
26	Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in Tribolium. PLoS Genetics, 2014, 10, e1004677.	3.5	48
27	Interaction between 25S rRNA A Loop and Eukaryotic Translation Initiation Factor 5B Promotes Subunit Joining and Ensures Stringent AUG Selection. Molecular and Cellular Biology, 2013, 33, 3540-3548.	2.3	10
28	Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function. Translation, 2013, 1, e26402.	2.9	3
29	Parallel Duplication and Partial Subfunctionalization of Â-Catenin/Armadillo during Insect Evolution. Molecular Biology and Evolution, 2012, 29, 647-662.	8.9	28
30	Asymmetrically expressed <i>axin</i> required for anterior development in <i>Tribolium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7782-7786.	7.1	65
31	Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2012, 42, 264-276.	2.7	80
32	A segmentation clock operating in blastoderm and germband stages of <i>Tribolium</i> development. Development (Cambridge), 2012, 139, 4341-4346.	2.5	100
33	Dissecting Systemic RNA Interference in the Red Flour Beetle Tribolium castaneum: Parameters Affecting the Efficiency of RNAi. PLoS ONE, 2012, 7, e47431.	2.5	174
34	Comparisons of the embryonic development of <i>Drosophila</i> , <i>Nasonia</i> , and <i>Tribolium</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 16-39.	5.9	81
35	Creating a Buzz About Insect Genomes. Science, 2011, 331, 1386-1386.	12.6	185
36	Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evolutionary Biology, 2010, 10, 374.	3.2	153

#	Article	IF	CITATIONS
37	BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Research, 2010, 38, D437-D442.	14.5	138
38	Yeast 18 S rRNA Is Directly Involved in the Ribosomal Response to Stringent AUG Selection during Translation Initiation. Journal of Biological Chemistry, 2010, 285, 32200-32212.	3.4	22
39	Prediction of alternatively spliced exons using Support Vector Machines. International Journal of Data Mining and Bioinformatics, 2010, 4, 411.	0.1	14
40	Highly Polymorphic Microsatellites in the North American Snakeweed Grasshopper,Hesperotettix viridis. Journal of Orthoptera Research, 2009, 18, 19-21.	1.0	3
41	Loss of Tc-arrow and canonical Wnt signaling alters posterior morphology and pair-rule gene expression in the short-germ insect, Tribolium castaneum. Development Genes and Evolution, 2009, 219, 369-375.	0.9	27
42	Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biology, 2009, 7, 73.	3.8	93
43	Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Developmental Biology, 2009, 325, 482-491.	2.0	44
44	The Red Flour Beetle, <i>Tribolium castaneum</i> (Coleoptera): A Model for Studies of Development and Pest Biology: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.emo126.	0.3	119
45	Concurrent In Situ Hybridization and Antibody Staining in Red Flour Beetle (<i>Tribolium</i>) Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5257.	0.3	18
46	Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Development Genes and Evolution, 2008, 218, 193-202.	0.9	89
47	Hedgehog signaling pathway function conserved in Tribolium segmentation. Development Genes and Evolution, 2008, 218, 181-192.	0.9	87
48	Do teashirt family genes specify trunk identity? Insights from the single tiptop/teashirt homolog of Tribolium castaneum. Development Genes and Evolution, 2008, 218, 141-152.	0.9	22
49	Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Development Genes and Evolution, 2008, 218, 127-139.	0.9	60
50	Larval RNAi in Drosophila?. Development Genes and Evolution, 2008, 218, 505-510.	0.9	112
51	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	27.8	1,255
52	Multiple Wnt Genes Are Required for Segmentation in the Short-Germ Embryo of Tribolium castaneum. Current Biology, 2008, 18, 1624-1629.	3.9	129
53	Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biology, 2008, 9, R61.	9.6	50
54	Large diversity of the piggyBac-like elements in the genome of Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2008, 38, 490-498.	2.7	15

#	Article	IF	CITATIONS
55	Analysis of transcriptome data in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2008, 38, 380-386.	2.7	46
56	Tubulin superfamily genes in Tribolium castaneum and the use of a Tubulin promoter to drive transgene expression. Insect Biochemistry and Molecular Biology, 2008, 38, 749-755.	2.7	37
57	Exploring Alternative Splicing Features Using Support Vector Machines. , 2008, , .		3
58	BeetleBase: the model organism database for Tribolium castaneum. Nucleic Acids Research, 2007, 35, D476-D479.	14.5	66
59	Evolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneum. Developmental Biology, 2007, 302, 281-294.	2.0	94
60	piggyBac-based insertional mutagenesis in Tribolium castaneum using donor/helper hybrids. Insect Molecular Biology, 2007, 16, 265-275.	2.0	75
61	MtDNA haplotypes, sequence divergence, and morphological variation in Gray-breasted Wood Wrens (Henichorina leucophrys) and their conservation implications. Journal of Field Ornithology, 2007, 78, 117-123.	0.5	5
62	BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Research, 2006, 34, W243-W248.	14.5	375
63	Prediction of RNA-Binding Residues in Protein Sequences Using Support Vector Machines. , 2006, 2006, 5830-3.		19
64	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	27.8	1,648
65	Patterns of conservation and change in honey bee developmental genes. Genome Research, 2006, 16, 1376-1384.	5.5	139
66	The Tribolium castaneum Ortholog of Sex combs reduced Controls Dorsal Ridge Development. Genetics, 2006, 174, 297-307.	2.9	13
67	A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6560-6564.	7.1	192
68	PREDICTION OF DNA-BINDING RESIDUES FROM SEQUENCE FEATURES. Journal of Bioinformatics and Computational Biology, 2006, 04, 1141-1158.	0.8	30
69	Prediction of RNA-Binding Residues in Protein Sequences Using Support Vector Machines. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	1
70	Determination of cluster number in clustering microarray data. Applied Mathematics and Computation, 2005, 169, 1172-1185.	2.2	78
71	Anterior localization of maternal mRNAs in a short germ insect lacking bicoid. Evolution & Development, 2005, 7, 142-149.	2.0	52
72	Closing the Gap: Comparative Approaches to Studying Insect Development in the Red Flour Beetle Tribolium castaneum and Other Short and Intermediate Germ Insects. Current Genomics, 2005, 6, 571-578.	1.6	5

#	Article	IF	CITATIONS
73	Genetic Linkage Maps of the Red Flour Beetle, Tribolium castaneum, Based on Bacterial Artificial Chromosomes and Expressed Sequence Tags. Genetics, 2005, 170, 741-747.	2.9	53
74	Computational identification of novel chitinase-like proteins in the <i>Drosophila melanogaster</i> genome. Bioinformatics, 2004, 20, 161-169.	4.1	90
75	Incremental genetic K-means algorithm and its application in gene expression data analysis. BMC Bioinformatics, 2004, 5, 172.	2.6	87
76	Entomological contributions to genetics: Studies on insect germ cells linked genes to chromosomes and chromosomes to mendelian inheritance. Archives of Insect Biochemistry and Physiology, 2003, 53, 115-118.	1.5	2
77	piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Molecular Biology, 2003, 12, 433-440.	2.0	132
78	Beetling around the genome. Genetical Research, 2003, 82, 155-161.	0.9	46
79	The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification. Development (Cambridge), 2003, 130, 4373-4381.	2.5	65
80	Tribolium Hox genes repress antennal development in the gnathos and trunk. Molecular Phylogenetics and Evolution, 2002, 24, 384-387.	2.7	23
81	Transgene expression from the Tribolium castaneum Polyubiquitin promoter. Insect Molecular Biology, 2002, 11, 399-407.	2.0	38
82	Cloning and Characterization of the <i>Tribolium castaneum</i> Eye-Color Genes Encoding Tryptophan Oxygenase and Kynurenine 3-Monooxygenase. Genetics, 2002, 160, 225-234.	2.9	116
83	Sequence of the <i>Tribolium castaneum</i> Homeotic Complex: The Region Corresponding to the <i>Drosophila melanogaster</i> Antennapedia Complex. Genetics, 2002, 160, 1067-1074.	2.9	47
84	The repressor activity of Even-skipped is highly conserved, and is sufficient to activate engrailed and to regulate both the spacing and stability of parasegment boundaries. Development (Cambridge), 2002, 129, 4411-4421.	2.5	33
85	The repressor activity of Even-skipped is highly conserved, and is sufficient to activate engrailed and to regulate both the spacing and stability of parasegment boundaries. Development (Cambridge), 2002, 129, 4411-21.	2.5	20
86	Pondering the procephalon: the segmental origin of the labrum. Development Genes and Evolution, 2001, 211, 89-95.	0.9	60
87	Homeotic evidence for the appendicular origin of the labrum in Tribolium castaneum. Development Genes and Evolution, 2001, 211, 96-102.	0.9	39
88	Molecular characterization of Tclabial and the 3? end of the Tribolium homeotic complex. Development Genes and Evolution, 2001, 211, 244-251.	0.9	22
89	Molecular characterization ofCephalothorax, theTribolium ortholog ofSex combs reduced. Genesis, 2001, 30, 12-20.	1.6	40
90	Interactions of the Tribolium <i>Sex combs reduced</i> and <i>proboscipedia</i> Orthologs in Embryonic Labial Development. Genetics, 2001, 159, 1643-1648.	2.9	27

#	Article	IF	CITATIONS
91	maxillopedia is the Tribolium ortholog of proboscipedia. Evolution & Development, 2000, 2, 145-151.	2.0	23
92	Analysis of <i>maxillopedia</i> Expression Pattern and Larval Cuticular Phenotype in Wild-Type and Mutant Tribolium. Genetics, 2000, 155, 721-731.	2.9	40
93	Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evolution & Development, 1999, 1, 11-15.	2.0	146
94	Molecular and genetic analysis of the Tribolium Ultrabithorax ortholog, Ultrathorax. Development Genes and Evolution, 1999, 209, 608-619.	0.9	36
95	RAPD-Based Genetic Linkage Maps of Tribolium castaneum. Genetics, 1999, 153, 333-338.	2.9	47
96	Molecular characterization of the Tribolium abdominal-A ortholog and implications for the products of the Drosophila gene. Development Genes and Evolution, 1998, 207, 446-452.	0.9	33
97	Molecular characterization and embryonic expression of the even-skipped ortholog of Tribolium castaneum. Mechanisms of Development, 1997, 61, 165-173.	1.7	67
98	The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature, 1997, 385, 548-552.	27.8	180
99	Useful DNA polymorphisms are identified by snapback, a midrepetitive element in Tribolium castaneum. Genome, 1996, 39, 568-578.	2.0	3
100	Two orthodenticle -related genes in the short-germ beetle Tribolium castaneum. Development Genes and Evolution, 1996, 206, 35-45.	0.9	59
101	The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Development Genes and Evolution, 1996, 206, 237-246.	0.9	64
102	<i>Woot</i> , an Active Gypsy-Class Retrotransposon in the Flour Beetle, <i>Tribolium castaneum</i> , is Associated With a Recent Mutation. Genetics, 1996, 143, 417-426.	2.9	28
103	Genetic Control of Early Embryogenesis in the Red Flour Beetle,Tribolium castaneum. American Zoologist, 1994, 34, 343-352.	0.7	23
104	Embryonic expression of the singleTribolium engrailed homolog. Genesis, 1994, 15, 7-18.	2.1	126
105	Structure and function of the homeotic gene complex (HOM-C) in the beetle,Tribolium castaneum. BioEssays, 1993, 15, 439-444.	2.5	93
106	A deficiency of the homeotic complex of the beetle Tribolium. Nature, 1991, 350, 72-74.	27.8	166
107	Molecular genetic manipulation of the red flour beetle: Genome organization and cloning of a ribosomal protein gene. Insect Biochemistry, 1990, 20, 185-193.	1.8	60
108	Sensory control of dauer larva formation inCaenorhabditis elegans. Journal of Comparative Neurology, 1981, 198, 435-451.	1.6	193

#	Article	IF	CITATIONS
109	Divergent host plant adaptation drives the evolution of sexual isolation in the grasshopper Hesperotettix viridis (Orthoptera: Acrididae) in the absence of reinforcement. Biological Journal of the Linnean Society, 0, 100, 866-878.	1.6	17
110	Utilizing a chromosomal-length genome assembly to annotate the Wnt signaling pathway in the Asian citrus psyllid, Diaphorina citri. GigaByte, 0, 2021, 1-15.	0.0	7
111	Annotation of yellow genes in Diaphorina citri, the vector for Huanglongbing disease. GigaByte, 0, 2021, 1-15.	0.0	5
112	Annotation of chitin biosynthesis genes in Diaphorina citri, the Asian citrus psyllid. GigaByte, 0, 2021, 1-12.	0.0	8
113	In silico characterization of chitin deacetylase genes in the Diaphorina citri genome. GigaByte, 0, 2021, 1-11.	0.0	4
114	Annotation of segmentation pathway genes in the Asian citrus psyllid, Diaphorina citri. GigaByte, 0, 2021, 1-13.	0.0	3
115	Genomic identification, annotation, and comparative analysis of Vacuolar-type ATP synthase subunits in DiaphorinaÂcitri. GigaByte, 0, 2022, 1-18.	0.0	1
116	Annotation of glycolysis, gluconeogenesis, and trehaloneogenesis pathways provide insight into carbohydrate metabolism in the Asian citrus psyllid. GigaByte, 0, 2022, 1-19.	0.0	2
117	Ubiquitin-proteasome pathway annotation in Diaphorina citri canÂreveal potential targets for RNAi-based pest management. GigaByte, 0, 2022, 1-10.	0.0	0
118	Manual curation and phylogenetic analysis of chitinase family genes in the Asian citrus psyllid, Diaphorina citri. GigaByte, 0, 2022, 1-17.	0.0	1
119	Annotation of putative circadian rhythm-associated genes in Diaphorina citri (Hemiptera: Liviidae). GigaByte, 0, 2022, 1-15.	0.0	0
120	Annotation of Hox cluster and Hox cofactor genes in the Asian citrus psyllid, Diaphorina citri, reveals novel features. GigaByte, 0, 2022, 1-18.	0.0	1