Per Nilsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6216100/publications.pdf

Version: 2024-02-01

96 3,134 27 52 papers citations h-index g-index

97 97 97 3949
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Results from a prospective, randomised study on (accelerated) preoperative versus (conventional) postoperative radiotherapy in treatment of patients with resectable squamous cell carcinoma of the oral cavity $\hat{a} \in \text{``The ARTSCAN 2 study. Radiotherapy and Oncology, 2022, 166, 26-32.}$	0.3	2
2	Primary tumor volume and prognosis for patients with p16-positive and p16-negative oropharyngeal squamous cell carcinoma treated with radiation therapy. Radiation Oncology, 2022, 17, .	1.2	9
3	ARTSCAN III: A Randomized Phase III Study Comparing Chemoradiotherapy With Cisplatin Versus Cetuximab in Patients With Locoregionally Advanced Head and Neck Squamous Cell Cancer. Journal of Clinical Oncology, 2021, 39, 38-47.	0.8	89
4	Long-Term Risk of Hip Complications After Radiation Therapy for Prostate Cancer: A Dose-Response Study. Advances in Radiation Oncology, 2021, 6, 100571.	0.6	8
5	Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer (HYPO-RT-PC): patient-reported quality-of-life outcomes of a randomised, controlled, non-inferiority, phase 3 trial. Lancet Oncology, The, 2021, 22, 235-245.	5.1	88
6	Adaptive sequential plan-on-plan optimization during prostate-specific antigen response guided radiotherapy of recurrent prostate cancer. Physics and Imaging in Radiation Oncology, 2021, 18, 5-10.	1.2	1
7	PSA decay during salvage radiotherapy for prostate cancer as a predictor of disease outcome – 5Âyear follow-up of a prospective observational study. Clinical and Translational Radiation Oncology, 2020, 24, 23-28.	0.9	4
8	Comparative Effectiveness of Different Radical Radiotherapy Treatment Regimens for Prostate Cancer: A Population-Based Cohort Study. JNCI Cancer Spectrum, 2020, 4, pkaa006.	1.4	5
9	Altered fractionation diminishes importance of tumor volume in oropharyngeal cancer: Subgroup analysis of ARTSCANâ€trial. Head and Neck, 2020, 42, 2099-2105.	0.9	10
10	Radical radiotherapy for prostate cancer: patterns of care in Sweden 1998–2016. Acta Oncológica, 2020, 59, 549-557.	0.8	11
11	Erectile Dysfunction and Absorbed Dose to Penile Base Structures in a Randomized Trial Comparing Ultrahypofractionated and Conventionally Fractionated Radiation Therapy for Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 107, 143-151.	0.4	16
12	No Increased Cardiac Mortality or Morbidity of Radiation Therapy in Breast Cancer Patients After Breast-Conserving Surgery: 20-Year Follow-up of the Randomized SweBCGRT Trial. International Journal of Radiation Oncology Biology Physics, 2020, 107, 701-709.	0.4	19
13	Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet, The, 2019, 394, 385-395.	6.3	542
14	Target definition in radiotherapy of prostate cancer using magnetic resonance imaging only workflow. Physics and Imaging in Radiation Oncology, 2019, 9, 89-91.	1,2	15
15	Prostate Cancer Death After Radiotherapy or Radical Prostatectomy: A Nationwide Population-based Observational Study. European Urology, 2018, 73, 502-511.	0.9	37
16	Determinants for local tumour control probability after radiotherapy of anal cancer. Radiotherapy and Oncology, 2018, 128, 380-386.	0.3	18
17	The effect of prostate motion during hypofractionated radiotherapy can be reduced by using flattening filter free beams. Physics and Imaging in Radiation Oncology, 2018, 6, 66-70.	1.2	7
18	Prostate Cancer Radiation Therapy and Risk of Thromboembolic Events. International Journal of Radiation Oncology Biology Physics, 2017, 97, 1026-1031.	0.4	9

#	Article	IF	CITATIONS
19	Role of radiotherapy fractionation in head and neck cancers (MARCH): an updated meta-analysis. Lancet Oncology, The, 2017, 18, 1221-1237.	5.1	226
20	Dysphagia $\hat{a} \in$ Results from multivariable predictive modelling on aspiration from a subset of the ARTSCAN trial. Radiotherapy and Oncology, 2017, 122, 192-199.	0.3	19
21	A dose based approach for evaluation of inter-observer variations in target delineation. Technical Innovations and Patient Support in Radiation Oncology, 2017, 3-4, 41-47.	0.6	4
22	A national approach for automated collection of standardized and population-based radiation therapy data in Sweden. Radiotherapy and Oncology, 2016, 119, 344-350.	0.3	19
23	Long-term adverse effects after curative radiotherapy and radical prostatectomy: population-based nationwide register study. Scandinavian Journal of Urology, 2016, 50, 338-345.	0.6	17
24	Dose-volume analysis of radiation-induced trismus in head and neck cancer patients. Acta $Oncol\tilde{A}^3$ gica, 2016, 55, 1313-1317.	0.8	28
25	Low-dose rate brachytherapy with I-125 seeds has an excellent 5-year outcome with few side effects in patients with low-risk prostate cancer. Acta Oncol \tilde{A}^3 gica, 2016, 55, 1016-1021.	0.8	12
26	Very low rate of circulating tumour cells (CTCs) in patients with PSA recurrence after radical prostatectomy referred to salvage radiotherapy. Acta Oncol \tilde{A}^3 gica, 2016, 55, 113-115.	0.8	1
27	Cohort Profile Update: The National Prostate Cancer Register of Sweden and Prostate Cancer data Base—a refined prostate cancer trajectory. International Journal of Epidemiology, 2016, 45, 73-82.	0.9	78
28	Differences in health related quality of life in the randomised ARTSCAN study; accelerated vs. conventional radiotherapy for head and neck cancer. A five year follow up. Radiotherapy and Oncology, 2016, 118, 335-341.	0.3	15
29	Aspiration as a late complication after accelerated versus conventional radiotherapy in patients with head and neck cancer. Acta Oto-Laryngologica, 2016, 136, 304-311.	0.3	8
30	Qualitative interpretation of PET scans using a Likert scale to assess neck node response to radiotherapy in head and neck cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 609-616.	3.3	38
31	Evaluation of dual-arc VMAT radiotherapy treatment plans automatically generated via dose mimicking. Acta Oncológica, 2016, 55, 523-525.	0.8	17
32	Regional recurrence of oropharyngeal cancer after definitive radiotherapy: a case control study. Radiation Oncology, 2015, 10, 117.	1.2	2
33	Multi-modality optimisation in radiotherapy treatment planning using composite objective values. Acta Oncol $ ilde{A}^3$ gica, 2015, 54, 557-561.	0.8	3
34	Mature results from a Swedish comparison study of conventional versus accelerated radiotherapy in head and neck squamous cell carcinoma – The ARTSCAN trial. Radiotherapy and Oncology, 2015, 117, 99-105.	0.3	26
35	A template for writing radiotherapy protocols. Acta Oncol $ ilde{A}^3$ gica, 2015, 54, 275-279.	0.8	9
36	Lag time to adverse events after radical prostatectomy and curative radiotherapy Journal of Clinical Oncology, 2015, 33, 49-49.	0.8	1

#	Article	IF	Citations
37	Comparative Proton and Photon Treatment Planning in Pediatric Patients with Various Diagnoses. International Journal of Particle Therapy, 2015, 2, 367-375.	0.9	22
38	Radiation-induced trismus in the ARTSCAN head and neck trial. Acta Oncológica, 2014, 53, 620-627.	0.8	49
39	Assessment of volume segmentation in radiotherapy of adolescents; a treatment planning study by the Swedish Workgroup for Paediatric Radiotherapy. Acta Oncol \tilde{A}^3 gica, 2014, 53, 126-133.	0.8	4
40	Haematological toxicity in adult patients receiving craniospinal irradiation – Indication of a dose-bath effect. Radiotherapy and Oncology, 2014, 111, 47-51.	0.3	21
41	Change in prostate volume during extreme hypo-fractionation analysed with MRI. Radiation Oncology, 2014, 9, 22.	1.2	31
42	Weight and body mass index in relation to irradiated volume and to overall survival in patients with oropharyngeal cancer: a retrospective cohort study. Radiation Oncology, 2014, 9, 160.	1.2	31
43	Weight loss and body mass index in relation to aspiration in patients treated for head and neck cancer: a long-term follow-up. Supportive Care in Cancer, 2014, 22, 2361-2369.	1.0	27
44	On the biologically effective dose (BED)â€"using convolution for calculating the effects of repair: II. Numerical considerations. Physics in Medicine and Biology, 2013, 58, 1529-1548.	1.6	20
45	On the biologically effective dose (BED)â€"using convolution for calculating the effects of repair: I. Analytical considerations. Physics in Medicine and Biology, 2013, 58, 1507-1527.	1.6	18
46	Low rate of lymphedema after extended pelvic lymphadenectomy followed by pelvic irradiation of node-positive prostate cancer. Radiation Oncology, 2013, 8, 271.	1.2	16
47	Brain inflammation induces post-synaptic changes during early synapse formation in adult-born hippocampal neurons. Experimental Neurology, 2013, 250, 176-188.	2.0	87
48	Treatment plan comparison using grading analysis based on clinical judgment. Acta Oncol \tilde{A}^3 gica, 2013, 52, 645-651.	0.8	8
49	Weight loss in patients with head and neck cancer during and after conventional and accelerated radiotherapy. Acta Oncol $ ilde{A}^3$ gica, 2013, 52, 711-718.	0.8	72
50	Altered Synaptic Properties During Integration of Adult-Born Hippocampal Neurons Following a Seizure Insult. PLoS ONE, 2012, 7, e35557.	1.1	26
51	Life years lost—comparing potentially fatal late complications after radiotherapy for pediatric medulloblastoma on a common scale. Cancer, 2012, 118, 5432-5440.	2.0	61
52	Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol \tilde{A}^3 gica, 2011, 50, 806-816.	0.8	132
53	Conversion of helical tomotherapy plans to step-and-shoot IMRT plans-Pareto front evaluation of plans from a new treatment planning system. Medical Physics, 2011, 38, 3130-3138.	1.6	14
54	Particle Therapy – A next logical step in the improvement of radiotherapy. Acta Oncológica, 2011, 50, 741-744.	0.8	12

#	Article	IF	CITATIONS
55	Two-year results from a Swedish study on conventional versus accelerated radiotherapy in head and neck squamous cell carcinoma – The ARTSCAN study. Radiotherapy and Oncology, 2011, 100, 41-48.	0.3	35
56	Secondary Malignancies From Prostate Cancer Radiation Treatment: A Risk Analysis of the Influence of Target Margins and Fractionation Patterns. International Journal of Radiation Oncology Biology Physics, 2011, 79, 738-746.	0.4	23
57	3D geometric gel dosimetry verification of intraprostatic fiducial guided hypofractionated radiotherapy of prostate cancer. Journal of Physics: Conference Series, 2010, 250, 012059.	0.3	1
58	Telemedicine as a tool for sharing competence in paediatric radiotherapy – Implementation and initial experiences from a Swedish project. Acta Oncológica, 2009, 48, 146-152.	0.8	13
59	The effect on the small bowel of 5-FU and oxaliplatin in combination with radiation using a microcolony survival assay. Radiation Oncology, 2009, 4, 61.	1.2	7
60	Kilovoltage x-ray dosimetry—an experimental comparison between different dosimetry protocols. Physics in Medicine and Biology, 2008, 53, 4431-4442.	1.6	22
61	The quality assurance process for the ARTSCAN head and neck study – A practical interactive approach for QA in 3DCRT and IMRT. Radiotherapy and Oncology, 2008, 87, 290-299.	0.3	21
62	Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer. Acta Oncológica, 2007, 46, 937-944.	0.8	87
63	NTCP modelling and pulmonary function tests evaluation for the prediction of radiation induced pneumonitis in non-small-cell lung cancer radiotherapy. Physics in Medicine and Biology, 2007, 52, 1055-1073.	1.6	33
64	What's new in target volume definition for radiologists in ICRU Report 71? How can the ICRU volume definitions be integrated in clinical practice?. Cancer Imaging, 2007, 7, 104-116.	1.2	44
65	1-[11C]-acetate PET imaging in head and neck cancer—a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 651-657.	3.3	28
66	"Distributed proton radiation therapy―A new concept for advanced competence support. Acta Oncológica, 2006, 45, 1094-1101.	0.8	20
67	Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams. Physics in Medicine and Biology, 2004, 49, 4493-4506.	1.6	26
68	A simplistic formalism for calculating entrance dose in high-energy x-ray beams. Physics in Medicine and Biology, 2002, 47, 3985-3995.	1.6	1
69	Influence of initial electron beam characteristics on Monte Carlo calculated absorbed dose distributions for linear accelerator electron beams. Physics in Medicine and Biology, 2002, 47, 4019-4041.	1.6	44
70	Dosimetry characteristics of degraded electron beams investigated by Monte Carlo calculations in a setup for intraoperative radiation therapy. Physics in Medicine and Biology, 2002, 47, 239-256.	1.6	23
71	Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine. Journal of Applied Clinical Medical Physics, 2002, 3, 73-87.	0.8	8
72	Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine. Journal of Applied Clinical Medical Physics, 2002, 3, 73.	0.8	12

#	Article	IF	Citations
73	Independent checking of the delivered dose for high-energy X-rays using a hand-held PC. Radiotherapy and Oncology, 2001, 58, 201-208.	0.3	18
74	Design and dosimetry characteristics of a soft-docking system for intraoperative radiation therapy. International Journal of Radiation Oncology Biology Physics, 2000, 47, 527-533.	0.4	19
75	Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy. Medical Physics, 2000, 27, 2580-2588.	1.6	39
76	Transmission measurements in air using the ESTRO mini-phantom. Physics in Medicine and Biology, 1999, 44, 2445-2450.	1.6	12
77	Verification of a pencil beam based treatment planning system: output factors for open photon beams shaped with MLC or blocks. Physics in Medicine and Biology, 1999, 44, N201-N207.	1.6	19
78	Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. International Journal of Radiation Oncology Biology Physics, 1998, 42, 1169-1176.	0.4	170
79	A simple test device for electrometers. Physics in Medicine and Biology, 1998, 43, 2385-2391.	1.6	7
80	Build-up cap materials for measurement of photon head-scatter factors. Physics in Medicine and Biology, 1997, 42, 1875-1886.	1.6	36
81	Limitations of a pencil beam approach to photon dose calculations in the head and neck region. Medical Dosimetry, 1996, 21, 38.	0.4	0
82	The influence of air humidity on an unsealed ionization chamber in a linear accelerator. Physics in Medicine and Biology, 1996, 41, 2541-2548.	1.6	3
83	Verification and implementation of dynamic wedge calculations in a treatment planning system based on a dose-to-energy-fluence formalism. Medical Physics, 1996, 23, 307-316.	1.6	29
84	Dosimetric verification of open asymmetric photon fields calculated with a treatment planning system based on dose-to-energy-fluence concepts. Physics in Medicine and Biology, 1996, 41, 1277-1290.	1.6	14
85	Modeling transmission and scatter for photon beam attenuators. Medical Physics, 1995, 22, 1711-1720.	1.6	44
86	Limitations of a pencil beam approach to photon dose calculations in the head and neck region. Radiotherapy and Oncology, 1995, 37, 74-80.	0.3	37
87	Normal Tissue Reactions in Mice after Combined Treatment with Metoclopramide and Ionizing Radiation. Acta Oncológica, 1992, 31, 469-474.	0.8	12
88	AP threshold elevation in the guinea pig following exposure to a broadband noise. Journal of the Acoustical Society of America, 1989, 86, 2223-2228.	0.5	2
89	Effect of hyperthermia and/or nicotinamide on the radiation response of a C3H mammary carcinoma. European Journal of Cancer & Clinical Oncology, 1989, 25, 1733-1737.	0.9	4
90	Comparison of low dose nicotinamide versus benzamide, administered per os, as radiosensitizers in a C3H mammary carcinoma. Radiotherapy and Oncology, 1988, 12, 327-331.	0.3	10

#	Article	IF	CITATION
91	Microwave-induced hyperthermia and radiotherapy in human superficial tumours: Clinical results with a comparative study of combined treatment versus radiotherapy alone. International Journal of Hyperthermia, 1987, 3, 393-411.	1.1	76
92	Peritonitis in Patients on Continuous Ambulatory Peritoneal Dialysis: A Changing Scene. Scandinavian Journal of Infectious Diseases, 1984, 16, 187-194.	1.5	26
93	Continuous Ambulatory Peritoneal Dialysis in the Treatment of Endâ€stage Diabetic Nephropathy. Acta Medica Scandinavica, 1984, 215, 427-434.	0.0	11
94	Comparison of two Catheters for Peritoneal Access in Patients Undergoing Continuous Ambulatory Peritoneal Dialysis (CAPD). Scandinavian Journal of Urology and Nephrology, 1983, 17, 343-346.	1.4	19
95	Clinical Outcome of 50 Patients Started on Continuous Ambulatory Peritoneal Dialysis in a Swedish Centre. Scandinavian Journal of Urology and Nephrology, 1983, 17, 337-342.	1.4	8
96	Regulation of Iron Therapy by S-Ferritin Estimations in Patients on Chronic Hemodialysis. Scandinavian Journal of Urology and Nephrology, 1981, 15, 69-72.	1.4	7