Gabriel A RincÃ³n-Mora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-PSR LDOs: Variations, Improvements, and Best Compromise. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 924-928.	3.0	3
2	Lowest-v _{IN} CMOS Single-Inductor Boost Charger: Design, Limits, and Validation. IEEE Transactions on Power Electronics, 2022, 37, 10808-10820.	7.9	1
3	Design of Switched-Inductor Charging Regulator for Resistive On-Chip Thermoelectric Generators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2872-2876.	3.0	1
4	Autonomous and Programmable 12-W 10-kHz Single-Cell Li-Ion Battery Tester. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	0
5	Efficient Power Transfers in Piezoelectric Energy-Harvesting Switched-Inductor Chargers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1248-1252.	3.0	1
6	A Self-Synchronized Maximum-Power-Point Inductively Coupled Wireless Battery Charger for Embedded Microsensors. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2, 297-304.	3.9	1
7	Optimal High-Efficiency DCM Design of Switched-Inductor CMOS Power Supplies. , 2021, , .		0
8	Piezoelectric CMOS Charger: Highest Output-Power Design. , 2020, , .		1
9	Highest Maximum Power Point of Radially Distant Inductively Coupled Power Receivers With Deep Submicron CMOS. IEEE Transactions on Industrial Informatics, 2020, 16, 1086-1093.	11.3	2
10	Least Lossy Piezoelectric Energy-Harvesting Charger. , 2019, , .		2
11	Lowest V _{IN} Possible for Switched-Inductor Boost Converters. , 2019, , .		2
12	180-nm 85%-Efficient Inductively Coupled Switched Resonant Half-Bridge Power Receiver. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 983-987.	3.0	3
13	Light-Harvesting CMOS Power-Supply System for 0–10-mW Wireless Microsensors. IEEE Sensors Journal, 2019, 19, 726-734.	4.7	9
14	Energy-Harvesting Piezoelectric-Powered CMOS Series Switched-Inductor Bridge. IEEE Transactions on Power Electronics, 2019, 34, 6489-6497.	7.9	11
15	Compact Fast-Waking Light/Heat-Harvesting 0.18- <inline-formula> <tex-math notation="LaTeX">\$muext{m}\$ </tex-math </inline-formula> CMOS Switched-Inductor Charger. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 2024-2034.	5.4	6
16	87%-Efficient 330-mW 0.6- <italic>μ</italic> m Single-Inductor Triple-Output Buck–Boost Power Supply. IEEE Transactions on Power Electronics, 2018, 33, 6837-6844.	7.9	6
17	Bootstrapping and Resetting CMOS Starter for Thermoelectric and Photovoltaic Chargers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 156-160.	3.0	3

18 Ripple Suppression of On-Chip Switched-Inductor Power Supplies. , 2018, , .

1

#	Article	IF	CITATIONS
19	0.6-μm CMOS-Switched-Inductor Dual-Supply Hysteretic Current-Mode Buck Converter. IEEE Transactions on Power Electronics, 2017, 32, 2387-2394.	7.9	6
20	Drawing the Most Power From Low-Cost Single-Well 1-mm ² CMOS Photovoltaic Cells. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 46-50.	3.0	9
21	Tutorial: Tiny light-harvesting photovoltaic charger-supplies. , 2017, , .		0
22	Power analysis and maximum output-power scheme for inductively coupled resonant power receivers. , 2017, , .		3
23	Energy-harvesting microsensors: Low-energy task schedule & fast drought-recovery design. , 2016, , .		6
24	Tiny Piezoelectric Harvesters: Principles, Constraints, and Power Conversion. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 639-649.	5.4	53
25	0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System. IEEE Transactions on Power Electronics, 2016, 31, 2950-2958.	7.9	37
26	A Nonresonant Self-Synchronizing Inductively Coupled 0.18- <inline-formula> <tex-math notation="LaTeX">\$mu \$ </tex-math </inline-formula> m CMOS Power Receiver and Charger. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 261-271.	5.4	20
27	Harvesting the highest power from tiny electrostatic transducers with CMOS circuits. , 2014, , .		2
28	A 44–93- \$muhbox{s}\$ 250–400-mV 0.18- \$muhbox{m}\$ CMOS Starter for DC-Sourced Switched-Inductor Energy Harvesters. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61, 1002-1006.	3.0	9
29	23.4 Dual-source single-inductor 0.18μm CMOS charger-supply with nested hysteretic and adaptive on-time PWM control. , 2014, , .		12
30	A Single-Inductor 0.35 µm CMOS Energy-Investing Piezoelectric Harvester. IEEE Journal of Solid-State Circuits, 2014, 49, 2277-2291.	5.4	98
31	Inductively Coupled 180-nm CMOS Charger With Adjustable Energy-Investment Capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60, 482-486.	3.0	7
32	Stability analysis & design of hysteretic current-mode switched-inductor buck DC-DC converters. , 2013, , .		7
33	Efficiency of switched-inductor dc-dc converter ICs across process technologies. , 2012, , .		Ο
34	High-damping energy-harvesting electrostatic CMOS charger. , 2012, , .		6
35	Small saturating inductors for more compact switching power supplies. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7, 69-73.	1.4	54
36	Single-inductor fuel cell-Li ion charger-supply IC with nested hysteretic control. Analog Integrated Circuits and Signal Processing, 2012, 70, 33-45.	1.4	0

GABRIEL A RINCÃ³N-MORA

3

#	Article	IF	CITATIONS
37	Harvesting Ambient Kinetic Energy With Switched-Inductor Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 1551-1560.	5.4	24
38	Extracting the frequency response of switching DC-DC converters in CCM and DCM from time-domain simulations. , 2011, , .		4
39	Increasing Electrical Damping in Energy-Harnessing Transducers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58, 787-791.	3.0	13
40	A low-impedance, sub-bandgap 0.6Âî¼m CMOS reference with 0.84% trimless 3-σ accuracy and â^'30ÂdB worst-case PSRR up to 50ÂMHz. Analog Integrated Circuits and Signal Processing, 2010, 62, 345-359.	1.4	1
41	One Clock-Cycle Response 0.5 m CMOS Dual-Mode DC-DC Bypass Boost Converter Stable over Wide Variations. Advances in Power Electronics, 2010, 2010, 1-9.	0.8	0
42	A 2-\$mu\$m BiCMOS Rectifier-Free AC–DC Piezoelectric Energy Harvester-Charger IC. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4, 400-409.	4.0	55
43	High Power-Supply-Rejection (PSR) Current-Mode Low-Dropout (LDO) Regulator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57, 868-873.	3.0	52
44	A 0.7-\$mu\$m BiCMOS Electrostatic Energy-Harvesting System IC. IEEE Journal of Solid-State Circuits, 2010, 45, 483-496.	5.4	75
45	Harvesting kinetic energy with switched-inductor DC-DC converters. , 2010, , .		6
46	Self-Tuning Electrostatic Energy-Harvester IC. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57, 808-812.	3.0	21
47	Operation-based signal-flow AC analysis of switching DC-DC converters in CCM and DCM. , 2009, , .		7
48	Special issue on IEEE-NEWCAS/MWSCAS2007. Analog Integrated Circuits and Signal Processing, 2009, 60, 1-2.	1.4	0
49	Single-Inductor–Multiple-Output Switching DC–DC Converters. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56, 614-618.	3.0	112
50	Achieving High Efficiency Under Micro-Watt Loads with Switching Buck DC–DC Converters. Journal of Low Power Electronics, 2009, 5, 229-240.	0.6	15
51	A Fast, Sigma–Delta \$(Sigma Delta)\$ Boost DC–DC Converter Tolerant to Wide <i>LC</i> Filter Variations. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 198-202.	3.0	13
52	Energy-Harvesting System-in-Package Microsystem. Journal of Energy Engineering - ASCE, 2008, 134, 121-129.	1.9	31
53	A Compact Electrical Model for Microscale Fuel Cells Capable of Predicting Runtime and \$I\$–\$V\$ Polarization Performance. IEEE Transactions on Energy Conversion, 2008, 23, 842-850.	5.2	11

54 Designing an Accurate and Robust LC-Compliant Asynchronous ΣΔ Boost DC-DC Converter. , 2007, , .

#	Article	IF	CITATIONS
55	A High Efficiency WCDMA RF Power Amplifier With Adaptive, Dual-Mode Buck-Boost Supply and Bias-Current Control. IEEE Microwave and Wireless Components Letters, 2007, 17, 238-240.	3.2	29
56	Design methodology of a hybrid micro-scale fuel cell-thin-film lithium ion source. Midwest Symposium on Circuits and Systems, 2007, , .	1.0	5
57	An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 312-321.	0.1	187
58	Achieving Less Than 2% 3- <formula formulatype="inline"> <tex>\$sigma\$</tex></formula> Mismatch With Minimum Channel-Length CMOS Devices. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2007, 54, 232-236.	2.2	8
59	Accurate, Compact, and Power-Efficient Li-Ion Battery Charger Circuit. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 1180-1184.	2.2	139