Philipp Wiemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215740/publications.pdf

Version: 2024-02-01

35 3,401 23 34 papers citations h-index g-index

36 36 36 4295 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
2	Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathogens, 2013, 9, e1003475.	4.7	406
3	FfVel1 and FfLae1, components of a <i>velvet</i> àâ€like complex in <i>Fusarium fujikuroi</i> , affect differentiation, secondary metabolism and virulence. Molecular Microbiology, 2010, 77, 972-994.	2.5	234
4	Biosynthesis of the red pigment bikaverin in <i>Fusarium fujikuroi</i> : genes, their function and regulation. Molecular Microbiology, 2009, 72, 931-946.	2.5	209
5	Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biology, 2017, 15, e2003583.	5.6	187
6	Prototype of an intertwined secondary-metabolite supercluster. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17065-17070.	7.1	174
7	Biosynthesis of Fusarubins Accounts for Pigmentation of Fusarium fujikuroi Perithecia. Applied and Environmental Microbiology, 2012, 78, 4468-4480.	3.1	169
8	Strategies for mining fungal natural products. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 301-313.	3.0	168
9	Genetic evidence for natural productâ€mediated plant–plant allelopathy in rice (<i>Oryza sativa</i>). New Phytologist, 2012, 193, 570-575.	7.3	146
10	An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genetics and Biology, 2015, 75, 20-29.	2.1	123
11	Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genetics and Biology, 2012, 49, 602-612.	2.1	114
12	Genetic Manipulation of the Fusarium fujikuroi Fusarin Gene Cluster Yields Insight into the Complex Regulation and Fusarin Biosynthetic Pathway. Chemistry and Biology, 2013, 20, 1055-1066.	6.0	107
13	Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Reports, 2017, 19, 1008-1021.	6.4	95
14	Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi. MBio, 2018, 9, .	4.1	73
15	Perturbations in small molecule synthesis uncovers an iron-responsive secondary metabolite network in Aspergillus fumigatus. Frontiers in Microbiology, 2014, 5, 530.	3.5	59
16	The Sfp-Type 4′-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity. PLoS ONE, 2012, 7, e37519.	2.5	59
17	Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus <i>Aspergillus</i> . MBio, 2017, 8, .	4.1	47
18	A possible role for fumagillin in cellular damage during host infection by <i>Aspergillus fumigatus</i> . Virulence, 2018, 9, 1548-1561.	4.4	37

#	Article	IF	CITATIONS
19	CoIN: co-inducible nitrate expression system for secondary metabolites in Aspergillus nidulans. Fungal Biology and Biotechnology, 2018, 5, 6.	5.1	29
20	Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen <i>Aspergillus flavus</i> Virulence, 2018, 9, 1273-1286.	4.4	29
21	Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products. Toxins, 2015, 7, 3572-3607.	3.4	27
22	Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genetics and Biology, 2015, 84, 26-36.	2.1	27
23	A Sensing Role of the Glutamine Synthetase in the Nitrogen Regulation Network in Fusarium fujikuroi. PLoS ONE, 2013, 8, e80740.	2.5	26
24	Illumina identification of RsrA, a conserved C2H2 transcription factor coordinating the NapA mediated oxidative stress signaling pathway in Aspergillus. BMC Genomics, 2014, 15, 1011.	2.8	25
25	TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genetics and Biology, 2016, 89, 102-113.	2.1	24
26	New Approach via Gene Knockout and Single-Step Chemical Reaction for the Synthesis of Isotopically Labeled Fusarin C as an Internal Standard for the Analysis of this Fusarium Mycotoxin in Food and Feed Samples. Journal of Agricultural and Food Chemistry, 2012, 60, 8350-8355.	5.2	18
27	Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model. Journal of Microbiology, 2019, 57, 509-520.	2.8	18
28	A Bcl-2 Associated Athanogene (bagA) Modulates Sexual Development and Secondary Metabolism in the Filamentous Fungus Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 1316.	3.5	13
29	Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi. Methods in Molecular Biology, 2016, 1401, 149-160.	0.9	12
30	The art of design. Fungal Genetics and Biology, 2016, 89, 1-2.	2.1	5
31	Acrophiarin (antibiotic S31794 /Fâ€1) from Penicillium arenicola shares biosynthetic features with both Aspergillus â€and Leotiomycete â€type echinocandins. Environmental Microbiology, 2020, 22, 2292-2311.	3.8	5
32	Identification of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Frontiers in Microbiology, 2020, 11, 1766.	3.5	4
33	Secreted Secondary Metabolites Reduce Bacterial Wilt Severity of Tomato in Bacterial–Fungal Co-Infections. Microorganisms, 2021, 9, 2123.	3.6	4
34	The sexual spore pigment asperthecin is required for normal ascospore production and protection from UV light in <i>Aspergillus nidulans</i> . Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	2
35	Abstract 998: HEx: A computational and synthetic biology platform applied to oncology drug discovery. , 2019, , .		0

3