
Hu Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215661/publications.pdf Version: 2024-02-01

HULONC

#	Article	IF	CITATIONS
1	Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nature Materials, 2021, 20, 321-328.	13.3	210
2	One-Step Conversion of Graphite to Crinkled Boron Nitride Nanofoams for Hydrophobic Liquid Absorption. ACS Applied Nano Materials, 2021, 4, 3500-3507.	2.4	3
3	Peanut Shell Derived Carbon Combined with Nano Cobalt: An Effective Flame Retardant for Epoxy Resin. Molecules, 2021, 26, 6662.	1.7	5
4	High-Performance Atomically-Thin Room-Temperature NO ₂ Sensor. Nano Letters, 2020, 20, 6120-6127.	4.5	34
5	NO2 gas sensors based on CVD tungsten diselenide monolayer. Applied Surface Science, 2020, 529, 147110.	3.1	61
6	Self-assembly and metal-directed assembly of organic semiconductor aerogels and conductive carbon nanofiber aerogels with controllable nanoscale morphologies. Carbon, 2019, 153, 648-656.	5.4	8
7	Plasma assisted formation of 3D highly porous nanostructured metal oxide network on microheater platform for Low power gas sensing. Sensors and Actuators B: Chemical, 2019, 301, 127067.	4.0	25
8	Wafer-scale on-chip synthesis and field emission properties of vertically aligned boron nitride based nanofiber arrays. Applied Physics Letters, 2019, 114, 093101.	1.5	2
9	Tensionâ€Induced Raman Enhancement of Graphene Membranes in the Stretched State. Small, 2019, 15, e1804337.	5.2	18
10	Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO ₂ Detection. Journal of Physical Chemistry C, 2018, 122, 20358-20365.	1.5	41
11	In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing. ACS Applied Materials & Interfaces, 2017, 9, 2634-2641.	4.0	81
12	Low-power catalytic gas sensing using highly stable silicon carbide microheaters. Journal of Micromechanics and Microengineering, 2017, 27, 045003.	1.5	16
13	Direct Organization of Morphology-Controllable Mesoporous SnO ₂ Using Amphiphilic Graft Copolymer for Gas-Sensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 37246-37253.	4.0	24
14	Conductometric gas sensing behavior of WS2 aerogel. FlatChem, 2017, 5, 1-8.	2.8	36
15	3D MoS ₂ Aerogel for Ultrasensitive NO ₂ Detection and Its Tunable Sensing Behavior. Advanced Materials Interfaces, 2017, 4, 1700217.	1.9	60
16	Density Tunable Graphene Aerogels Using a Sacrificial Polycyclic Aromatic Hydrocarbon. Physica Status Solidi (B): Basic Research, 2017, 254, 1700203.	0.7	2
17	High Surface Area MoS ₂ /Graphene Hybrid Aerogel for Ultrasensitive NO ₂ Detection. Advanced Functional Materials, 2016, 26, 5158-5165.	7.8	357
18	Nanowire-Assembled Hierarchical ZnCo ₂ O ₄ Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Interfaces, 2016, 8, 31764-31771.	4.0	69

Ни Long

#	Article	IF	CITATIONS
19	In Situ Localized Growth of Porous Tin Oxide Films on Low Power Microheater Platform for Low Temperature CO Detection. ACS Sensors, 2016, 1, 339-343.	4.0	57
20	ROBUST CATALYTIC GAS SENSING USING A SILICON CARBIDE MICROHEATER. , 2016, , .		1
21	Fabrication of 3D carbon structures based on C-MEMS technique (invited speaker). , 2015, , .		0
22	Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review. Journal of Micromechanics and Microengineering, 2015, 25, 113001.	1.5	31
23	Suspended integration of pyrolytic carbon membrane on C-MEMS. Microsystem Technologies, 2015, 21, 1835-1841.	1.2	3
24	High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam. Nanoscale Research Letters, 2014, 9, 492.	3.1	60
25	Synthesis of a nanowire self-assembled hierarchical ZnCo ₂ O ₄ shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3741-3748.	5.2	91
26	Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors. Journal of Micromechanics and Microengineering, 2014, 24, 045001.	1.5	17
27	Growth of nano-wrinkles on photoresist-derived carbon microelectrode array. International Journal of Nanotechnology, 2014, 11, 616.	0.1	7
28	High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. Journal of Power Sources, 2014, 272, 16-23.	4.0	103
29	Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors. Journal of Power Sources, 2014, 262, 494-500.	4.0	22
30	Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries. Scientific Reports, 2014, 4, 7413.	1.6	119
31	Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. Sensors and Actuators A: Physical, 2013, 198, 15-20.	2.0	24
32	Metal-catalyst free integration of SiO2 nanowires into carbon MEMS. , 2013, , .		0
33	Tailoring diffraction-induced light distribution toward controllable fabrication of suspended C-MEMS. Optics Express, 2012, 20, 17126.	1.7	10
34	Pyrolysis-assisted graphene exfoliation from graphite particles deposited on photoresist pillars. , 2012, , .		0
35	P1.1.17 Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. , 2012, , .		0