Hu Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215661/publications.pdf

Version: 2024-02-01

1,597	393982	454577
citations	h-index	g-index
35	35	3059
docs citations	times ranked	citing authors
	citations 35	1,597 19 citations h-index 35 35

#	Article	IF	CITATIONS
1	High Surface Area MoS ₂ /Graphene Hybrid Aerogel for Ultrasensitive NO ₂ Detection. Advanced Functional Materials, 2016, 26, 5158-5165.	7.8	357
2	Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nature Materials, 2021, 20, 321-328.	13.3	210
3	Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries. Scientific Reports, 2014, 4, 7413.	1.6	119
4	High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. Journal of Power Sources, 2014, 272, 16-23.	4.0	103
5	Synthesis of a nanowire self-assembled hierarchical ZnCo ₂ O ₄ shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3741-3748.	5.2	91
6	In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2634-2641.	4.0	81
7	Nanowire-Assembled Hierarchical ZnCo ₂ O ₄ Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Applied Materials & Low-Power Microheater for Highly Sensitive Formaldehyde Formaldehyde Microheater for Highly Sensitive Formaldehyde Microheater for Highly Sensitive Formaldehyde Forma	4.0	69
8	NO2 gas sensors based on CVD tungsten diselenide monolayer. Applied Surface Science, 2020, 529, 147110.	3.1	61
9	High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam. Nanoscale Research Letters, 2014, 9, 492.	3.1	60
10	3D MoS ₂ Aerogel for Ultrasensitive NO ₂ Detection and Its Tunable Sensing Behavior. Advanced Materials Interfaces, 2017, 4, 1700217.	1.9	60
11	In Situ Localized Growth of Porous Tin Oxide Films on Low Power Microheater Platform for Low Temperature CO Detection. ACS Sensors, 2016, 1, 339-343.	4.0	57
12	Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO ₂ Detection. Journal of Physical Chemistry C, 2018, 122, 20358-20365.	1.5	41
13	Conductometric gas sensing behavior of WS2 aerogel. FlatChem, 2017, 5, 1-8.	2.8	36
14	High-Performance Atomically-Thin Room-Temperature NO ₂ Sensor. Nano Letters, 2020, 20, 6120-6127.	4.5	34
15	Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review. Journal of Micromechanics and Microengineering, 2015, 25, 113001.	1.5	31
16	Plasma assisted formation of 3D highly porous nanostructured metal oxide network on microheater platform for Low power gas sensing. Sensors and Actuators B: Chemical, 2019, 301, 127067.	4.0	25
17	Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. Sensors and Actuators A: Physical, 2013, 198, 15-20.	2.0	24
18	Direct Organization of Morphology-Controllable Mesoporous SnO ₂ Using Amphiphilic Graft Copolymer for Gas-Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37246-37253.	4.0	24

#	Article	IF	Citations
19	Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors. Journal of Power Sources, 2014, 262, 494-500.	4.0	22
20	Tensionâ€Induced Raman Enhancement of Graphene Membranes in the Stretched State. Small, 2019, 15, e1804337.	5.2	18
21	Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors. Journal of Micromechanics and Microengineering, 2014, 24, 045001.	1.5	17
22	Low-power catalytic gas sensing using highly stable silicon carbide microheaters. Journal of Micromechanics and Microengineering, 2017, 27, 045003.	1.5	16
23	Tailoring diffraction-induced light distribution toward controllable fabrication of suspended C-MEMS. Optics Express, 2012, 20, 17126.	1.7	10
24	Self-assembly and metal-directed assembly of organic semiconductor aerogels and conductive carbon nanofiber aerogels with controllable nanoscale morphologies. Carbon, 2019, 153, 648-656.	5.4	8
25	Growth of nano-wrinkles on photoresist-derived carbon microelectrode array. International Journal of Nanotechnology, 2014, 11, 616.	0.1	7
26	Peanut Shell Derived Carbon Combined with Nano Cobalt: An Effective Flame Retardant for Epoxy Resin. Molecules, 2021, 26, 6662.	1.7	5
27	Suspended integration of pyrolytic carbon membrane on C-MEMS. Microsystem Technologies, 2015, 21, 1835-1841.	1.2	3
28	One-Step Conversion of Graphite to Crinkled Boron Nitride Nanofoams for Hydrophobic Liquid Absorption. ACS Applied Nano Materials, 2021, 4, 3500-3507.	2.4	3
29	Density Tunable Graphene Aerogels Using a Sacrificial Polycyclic Aromatic Hydrocarbon. Physica Status Solidi (B): Basic Research, 2017, 254, 1700203.	0.7	2
30	Wafer-scale on-chip synthesis and field emission properties of vertically aligned boron nitride based nanofiber arrays. Applied Physics Letters, 2019, 114, 093101.	1.5	2
31	ROBUST CATALYTIC GAS SENSING USING A SILICON CARBIDE MICROHEATER. , 2016, , .		1
32	Pyrolysis-assisted graphene exfoliation from graphite particles deposited on photoresist pillars. , 2012, , .		0
33	Metal-catalyst free integration of SiO2 nanowires into carbon MEMS. , 2013, , .		0
34	Fabrication of 3D carbon structures based on C-MEMS technique (invited speaker)., 2015,,.		0
35	P1.1.17 Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. , 2012, , .		0