
Yi-Chen E Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215543/publications.pdf Version: 2024-02-01

YICHEN FYANC

#	Article	lF	CITATIONS
1	Effects of the COVID-19 Pandemic on Water Utility Operations and Vulnerability. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	14
2	A Comprehensive Review of the Nexus of Food, Energy, and Water Systems: What the Models Tell Us. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	7
3	The Effects of Model Complexity on Model Output Uncertainty in Coâ€Evolved Coupled Naturalâ€Human Systems. Earth's Future, 2022, 10, .	2.4	5
4	An investigation of coupled natural human systems using a two-way coupled agent-based modeling framework. Environmental Modelling and Software, 2022, 155, 105451.	1.9	8
5	Investigating uncertainties in human adaptation and their impacts on water scarcity in the Colorado river Basin, United States. Journal of Hydrology, 2022, 612, 128015.	2.3	9
6	Water and Wastewater Systems and Utilities: Challenges and Opportunities during the COVID-19 Pandemic. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	31
7	Assessing food–energy–water resources management strategies at city scale: An agent-based modeling approach for Cape Town, South Africa. Resources, Conservation and Recycling, 2021, 170, 105573.	5.3	17
8	Assessing Adaptive Irrigation Impacts on Water Scarcity in Nonstationary Environments—A Multiâ€Agent Reinforcement Learning Approach. Water Resources Research, 2021, 57, e2020WR029262.	1.7	14
9	Examining the Food-Energy-Water-Environment Nexus in Transboundary River Basins through a Human Dimension Lens: Columbia River Basin. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	11
10	Development of reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology, 2020, 583, 124556.	2.3	51
11	Impact of climate change on adaptive management decisions in the face of water scarcity. Journal of Hydrology, 2020, 588, 125015.	2.3	23
12	Case Study on Hydropolitics in Afghanistan and Pakistan: Energy and Water Impacts of Kunar River Development. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	9
13	Impact of dam development and climate change on hydroecological conditions and natural hazard risk in the Mekong River Basin. Journal of Hydrology, 2019, 579, 124177.	2.3	37
14	Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions. Hydrology and Earth System Sciences, 2019, 23, 2261-2278.	1.9	28
15	Comparing the Economic and Environmental Effects of Different Water Management Schemes Using a Coupled Agent–Hydrologic Model. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	1.3	9
16	Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed. Environmental Modelling and Software, 2019, 122, 104031.	1.9	39
17	Multidimensional stress test for hydropower investments facing climate, geophysical and financial uncertainty. Global Environmental Change, 2018, 48, 168-181.	3.6	55
18	Gendered perspectives of ecosystem services: A systematic review. Ecosystem Services, 2018, 31, 58-67.	2.3	75

YI-CHEN E YANG

#	Article	IF	CITATIONS
19	A Twoâ€Phase Model for Trade Matching and Price Setting in Double Auction Water Markets. Water Resources Research, 2018, 54, 2999-3017.	1.7	11
20	Informing regional water-energy-food nexus with system analysis and interactive visualization – A case study in the Great Ruaha River of Tanzania. Agricultural Water Management, 2018, 196, 75-86.	2.4	36
21	Quantifying the Sustainability of Water Availability for the Waterâ€Foodâ€Energyâ€Ecosystem Nexus in the Niger River Basin. Earth's Future, 2018, 6, 1292-1310.	2.4	40
22	Relating perceptions of flood risk and coping ability to mitigation behavior in West Africa: Case study of Burkina Faso. Environmental Science and Policy, 2018, 89, 254-265.	2.4	18
23	Assessing climate change-induced flooding mitigation for adaptation in Boston's Charles River watershed, USA. Landscape and Urban Planning, 2017, 167, 25-36.	3.4	51
24	Guiding Groundwater Policy in the Indus Basin of Pakistan Using a Physically Based Groundwater Model. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	1.3	34
25	A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrology and Earth System Sciences, 2017, 21, 6275-6288.	1.9	67
26	Modeling the Agricultural Water–Energy–Food Nexus in the Indus River Basin, Pakistan. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	71
27	The future nexus of the Brahmaputra River Basin: Climate, water, energy and food trajectories. Global Environmental Change, 2016, 37, 16-30.	3.6	92
28	Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change. Hydrology and Earth System Sciences, 2015, 19, 857-876.	1.9	64
29	Estimation of flood damage functions for river basin planning: a case study in Bangladesh. Natural Hazards, 2015, 75, 2773-2791.	1.6	40
30	Room for improvement: Hydroclimatic challenges to poverty-reducing development of the Brahmaputra River basin. Environmental Science and Policy, 2015, 54, 64-80.	2.4	39
31	Combining regression and spatial proximity for catchment model regionalization: a comparative study. Hydrological Sciences Journal, 2015, 60, 1026-1043.	1.2	16
32	Climate Change Risk on the Water Resources Management of Himalayan Basins. , 2014, , .		0
33	Assessing groundwater policy with coupled economicâ€groundwater hydrologic modeling. Water Resources Research, 2014, 50, 2257-2275.	1.7	92
34	Water governance and adaptation to climate change in the Indus River Basin. Journal of Hydrology, 2014, 519, 2527-2537.	2.3	43
35	The Effect of Groundwater Allocation on Economic Welfare Loss. Ground Water, 2013, 51, 603-612.	0.7	4
36	An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan's Indus River basin. Water International, 2013, 38, 632-650.	0.4	34

YI-CHEN E YANG

#	Article	IF	CITATIONS
37	Panel regression techniques for identifying impacts of anthropogenic landscape change on hydrologic response. Water Resources Research, 2013, 49, 7874-7886.	1.7	19
38	Groundwater Resource Planning to Preserve Streamflow: Where Environmental Amenity Meets Economic Welfare Loss. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 440-448.	1.3	6
39	Decentralized Optimization Method for Water Allocation Management in the Yellow River Basin. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 313-325.	1.3	58
40	Agricultural water productivity assessment for the Yellow River Basin. Agricultural Water Management, 2011, 98, 1297-1306.	2.4	25
41	A New GIScience Application for Visualized Natural Resources Management and Decision Support. Transactions in GIS, 2011, 15, 109-124.	1.0	12
42	Reservoir Reoperation for Fish Ecosystem Restoration Using Daily Inflows—Case Study of Lake Shelbyville. Journal of Water Resources Planning and Management - ASCE, 2011, 137, 470-480.	1.3	35
43	A Multi-Agent System Based Model for Water Allocation Management in the Yellow River Basin. , 2010, ,		2
44	Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon. Environmental Modelling and Software, 2009, 24, 1062-1072.	1.9	19
45	A Decentralized Optimization Algorithm for Multi-Agent System Based Watershed Management. , 2009, ,		2
46	A decentralized optimization algorithm for multiagent system–based watershed management. Water Resources Research, 2009, 45, .	1.7	82
47	Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resources Research, 2008, 44, .	1.7	95
48	Understanding Hydrological Cycle Dynamics Due to Changing Land Use and Land Cover: Congo Basin Case Study. , 2008, , .		3
49	Modification of a stream temperature model with Beer's law and application to GaoShan Creek in Taiwan. Ecological Modelling, 2007, 200, 217-224.	1.2	12
50	Assessing the Human Water Use Impact in the River Basin Context. , 2006, , 1.		0