Yi-Chen E Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215543/publications.pdf

Version: 2024-02-01

		257101	315357
50	1,568	24	38
papers	citations	h-index	g-index
60	60	60	1887
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resources Research, 2008, 44, .	1.7	95
2	Assessing groundwater policy with coupled economicâ€groundwater hydrologic modeling. Water Resources Research, 2014, 50, 2257-2275.	1.7	92
3	The future nexus of the Brahmaputra River Basin: Climate, water, energy and food trajectories. Global Environmental Change, 2016, 37, 16-30.	3.6	92
4	A decentralized optimization algorithm for multiagent system–based watershed management. Water Resources Research, 2009, 45, .	1.7	82
5	Gendered perspectives of ecosystem services: A systematic review. Ecosystem Services, 2018, 31, 58-67.	2.3	75
6	Modeling the Agricultural Water–Energy–Food Nexus in the Indus River Basin, Pakistan. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	71
7	A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrology and Earth System Sciences, 2017, 21, 6275-6288.	1.9	67
8	Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change. Hydrology and Earth System Sciences, 2015, 19, 857-876.	1.9	64
9	Decentralized Optimization Method for Water Allocation Management in the Yellow River Basin. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 313-325.	1.3	58
10	Multidimensional stress test for hydropower investments facing climate, geophysical and financial uncertainty. Global Environmental Change, 2018, 48, 168-181.	3.6	55
11	Assessing climate change-induced flooding mitigation for adaptation in Boston's Charles River watershed, USA. Landscape and Urban Planning, 2017, 167, 25-36.	3.4	51
12	Development of reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology, 2020, 583, 124556.	2.3	51
13	Water governance and adaptation to climate change in the Indus River Basin. Journal of Hydrology, 2014, 519, 2527-2537.	2.3	43
14	Estimation of flood damage functions for river basin planning: a case study in Bangladesh. Natural Hazards, 2015, 75, 2773-2791.	1.6	40
15	Quantifying the Sustainability of Water Availability for the Waterâ€Foodâ€Energyâ€Ecosystem Nexus in the Niger River Basin. Earth's Future, 2018, 6, 1292-1310.	2.4	40
16	Room for improvement: Hydroclimatic challenges to poverty-reducing development of the Brahmaputra River basin. Environmental Science and Policy, 2015, 54, 64-80.	2.4	39
17	Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed. Environmental Modelling and Software, 2019, 122, 104031.	1.9	39
18	Impact of dam development and climate change on hydroecological conditions and natural hazard risk in the Mekong River Basin. Journal of Hydrology, 2019, 579, 124177.	2.3	37

#	Article	IF	Citations
19	Informing regional water-energy-food nexus with system analysis and interactive visualization – A case study in the Great Ruaha River of Tanzania. Agricultural Water Management, 2018, 196, 75-86.	2.4	36
20	Reservoir Reoperation for Fish Ecosystem Restoration Using Daily Inflowsâ€"Case Study of Lake Shelbyville. Journal of Water Resources Planning and Management - ASCE, 2011, 137, 470-480.	1.3	35
21	An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan's Indus River basin. Water International, 2013, 38, 632-650.	0.4	34
22	Guiding Groundwater Policy in the Indus Basin of Pakistan Using a Physically Based Groundwater Model. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	1.3	34
23	Water and Wastewater Systems and Utilities: Challenges and Opportunities during the COVID-19 Pandemic. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	31
24	Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions. Hydrology and Earth System Sciences, 2019, 23, 2261-2278.	1.9	28
25	Agricultural water productivity assessment for the Yellow River Basin. Agricultural Water Management, 2011, 98, 1297-1306.	2.4	25
26	Impact of climate change on adaptive management decisions in the face of water scarcity. Journal of Hydrology, 2020, 588, 125015.	2.3	23
27	Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon. Environmental Modelling and Software, 2009, 24, 1062-1072.	1.9	19
28	Panel regression techniques for identifying impacts of anthropogenic landscape change on hydrologic response. Water Resources Research, 2013, 49, 7874-7886.	1.7	19
29	Relating perceptions of flood risk and coping ability to mitigation behavior in West Africa: Case study of Burkina Faso. Environmental Science and Policy, 2018, 89, 254-265.	2.4	18
30	Assessing food–energy–water resources management strategies at city scale: An agent-based modeling approach for Cape Town, South Africa. Resources, Conservation and Recycling, 2021, 170, 105573.	5.3	17
31	Combining regression and spatial proximity for catchment model regionalization: a comparative study. Hydrological Sciences Journal, 2015, 60, 1026-1043.	1.2	16
32	Assessing Adaptive Irrigation Impacts on Water Scarcity in Nonstationary Environmentsâ€"A Multiâ€Agent Reinforcement Learning Approach. Water Resources Research, 2021, 57, e2020WR029262.	1.7	14
33	Effects of the COVID-19 Pandemic on Water Utility Operations and Vulnerability. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	14
34	Modification of a stream temperature model with Beer's law and application to GaoShan Creek in Taiwan. Ecological Modelling, 2007, 200, 217-224.	1.2	12
35	A New GIScience Application for Visualized Natural Resources Management and Decision Support. Transactions in GIS, 2011, 15, 109-124.	1.0	12
36	A Twoâ€Phase Model for Trade Matching and Price Setting in Double Auction Water Markets. Water Resources Research, 2018, 54, 2999-3017.	1.7	11

#	Article	IF	CITATIONS
37	Examining the Food-Energy-Water-Environment Nexus in Transboundary River Basins through a Human Dimension Lens: Columbia River Basin. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	11
38	Comparing the Economic and Environmental Effects of Different Water Management Schemes Using a Coupled Agent–Hydrologic Model. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	1.3	9
39	Case Study on Hydropolitics in Afghanistan and Pakistan: Energy and Water Impacts of Kunar River Development. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	9
40	Investigating uncertainties in human adaptation and their impacts on water scarcity in the Colorado river Basin, United States. Journal of Hydrology, 2022, 612, 128015.	2.3	9
41	An investigation of coupled natural human systems using a two-way coupled agent-based modeling framework. Environmental Modelling and Software, 2022, 155, 105451.	1.9	8
42	A Comprehensive Review of the Nexus of Food, Energy, and Water Systems: What the Models Tell Us. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	7
43	Groundwater Resource Planning to Preserve Streamflow: Where Environmental Amenity Meets Economic Welfare Loss. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 440-448.	1.3	6
44	The Effects of Model Complexity on Model Output Uncertainty in Coâ€Evolved Coupled Naturalâ€Human Systems. Earth's Future, 2022, 10, .	2.4	5
45	The Effect of Groundwater Allocation on Economic Welfare Loss. Ground Water, 2013, 51, 603-612.	0.7	4
46	Understanding Hydrological Cycle Dynamics Due to Changing Land Use and Land Cover: Congo Basin Case Study. , 2008, , .		3
47	A Decentralized Optimization Algorithm for Multi-Agent System Based Watershed Management. , 2009, ,		2
48	A Multi-Agent System Based Model for Water Allocation Management in the Yellow River Basin. , 2010, , .		2
49	Assessing the Human Water Use Impact in the River Basin Context. , 2006, , $1.$		0
50	Climate Change Risk on the Water Resources Management of Himalayan Basins. , 2014, , .		0