
Alan W Cruickshank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215251/publications.pdf Version: 2024-02-01

ALAN M CRUICKSHANK

#	Article	IF	CITATIONS
1	Enhancement of sorghum grain yield and nutrition: A role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. Plants People Planet, 2022, 4, 143-156.	3.3	12
2	Genetic control of leaf angle in sorghum and its effect on light interception. Journal of Experimental Botany, 2022, 73, 801-816.	4.8	10
3	From bits to bites: Advancement of the Germinate platform to support prebreeding informatics for crop wild relatives. Crop Science, 2021, 61, 1538-1566.	1.8	26
4	A global resource for exploring and exploiting genetic variation in sorghum crop wild relatives. Crop Science, 2021, 61, 150-162.	1.8	11
5	Sorghum. , 2021, , 196-221.		9
6	Tall 3-dwarfs: oxymoron or opportunity to increase grain yield in sorghum?. Planta, 2021, 253, 110.	3.2	0
7	Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 2021, 7, 766-773.	9.3	94
8	Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Plant Journal, 2021, 108, 231-243.	5.7	9
9	Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Industrial Crops and Products, 2021, 171, 113917.	5.2	20
10	Largeâ€scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnology Journal, 2020, 18, 1093-1105.	8.3	72
11	Genetic Diversity of C4 Photosynthesis Pathway Genes in Sorghum bicolor (L.). Genes, 2020, 11, 806.	2.4	6
12	Large-scale genome-wide association study reveals that drought-induced lodging in grain sorghum is associated with plant height and traits linked to carbon remobilisation. Theoretical and Applied Genetics, 2020, 133, 3201-3215.	3.6	14
13	The Impacts of Flowering Time and Tillering on Grain Yield of Sorghum Hybrids across Diverse Environments. Agronomy, 2020, 10, 135.	3.0	10
14	Spatial and temporal patterns of lodging in grain sorghum (Sorghum bicolor) in Australia. Crop and Pasture Science, 2020, 71, 379.	1.5	2
15	Novel Grain Weight Loci Revealed in a Cross between Cultivated and Wild Sorghum. Plant Genome, 2018, 11, 170089.	2.8	26
16	Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. Frontiers in Plant Science, 2017, 8, 1237.	3.6	59
17	Predicting Tillering of Diverse Sorghum Germplasm across Environments. Crop Science, 2017, 57, 78-87.	1.8	14
18	Non-cellulosic cell wall polysaccharides are subject to genotypeÂ×Âenvironment effects in sorghum (Sorghum bicolor) grain. Journal of Cereal Science, 2015, 63, 64-71.	3.7	5

Alan W Cruickshank

#	Article	IF	CITATIONS
19	The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biology, 2014, 14, 253.	3.6	49
20	Two distinct classes of QTL determine rust resistance in sorghum. BMC Plant Biology, 2014, 14, 366.	3.6	23
21	A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytologist, 2014, 203, 155-167.	7.3	53
22	QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering. Theoretical and Applied Genetics, 2014, 127, 2253-2266.	3.6	43
23	Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nature Communications, 2013, 4, 2320.	12.8	405
24	Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nature Communications, 2013, 4, 1483.	12.8	41
25	The Relationship Between the Stayâ€Green Trait and Grain Yield in Elite Sorghum Hybrids Grown in a Range of Environments. Crop Science, 2012, 52, 1153-1161.	1.8	148
26	Lack of Low Frequency Variants Masks Patterns of Non-Neutral Evolution following Domestication. PLoS ONE, 2011, 6, e23041.	2.5	17
27	Exploring and Exploiting Genetic Variation from Unadapted Sorghum Germplasm in a Breeding Program. Crop Science, 2011, 51, 1444-1457.	1.8	96
28	Near Infrared Reflectance as a Rapid and Inexpensive Surrogate Measure for Fatty Acid Composition and Oil Content of Peanuts (<i>Arachis Hypogaea</i> L.). Journal of Near Infrared Spectroscopy, 2005, 13, 287-291.	1.5	33
29	Peanut Stripe Potyvirus Resistance in Peanut (Arachis Hypogaea L.) Plants Carrying Viral Coat Protein Gene Sequences. Transgenic Research, 2004, 13, 59-67.	2.4	40
30	Selection index for identifying high-yielding groundnut genotypes in irrigated and rainfed environments. Annals of Applied Biology, 2003, 143, 303-310.	2.5	10
31	Blanchability of peanut (Arachis hypogaea L.) kernels: early generation selection and genotype stability over three environments. Australian Journal of Agricultural Research, 2003, 54, 885.	1.5	4
32	Peanut resistance to Sclerotinia minor and S. sclerotiorum. Australian Journal of Agricultural Research, 2002, 53, 1105.	1.5	16
33	Combined Analysis of Categorical and Numerical Descriptors of Australian Groundnut Accessions Using Nonlinear Principal Component Analysis. Journal of Agricultural, Biological, and Environmental Statistics, 1997, 2, 294.	1.4	9
34	Inter- and intra-specific variation in accumulation of cadmium by peanut, soybean, and navybean. Australian Journal of Agricultural Research, 1997, 48, 1151.	1.5	58
35	Mixed data types and the use of pattern analysis on the Australian groundnut germplasm data. Genetic Resources and Crop Evolution, 1996, 43, 363-376.	1.6	8
36	Patterns of diversity in fatty acid composition in the Australian groundnut germplasm collection. Genetic Resources and Crop Evolution, 1995, 42, 243-256.	1.6	17