Benjamin D Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215189/publications.pdf

Version: 2024-02-01

623188 887659 18 887 14 17 citations g-index h-index papers 18 18 18 1085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Dynamics Modeling of Interfacial Interactions between Flattened Carbon Nanotubes and Amorphous Carbon: Implications for Ultra-Lightweight Composites. ACS Applied Nano Materials, 2022, 5, 5915-5924.	2.4	7
2	Modifying carbon nanotube fibers: A study relating apparent interfacial shear strength and failure mode. Carbon, 2021, 173, 857-869.	5.4	17
3	Computationally Guided Design of Large-Diameter Carbon Nanotube Bundles for High-Strength Materials. ACS Applied Nano Materials, 2021, 4, 11115-11125.	2.4	10
4	Toward ultralight high-strength structural materials via collapsed carbon nanotube bonding. Carbon, 2020, 156, 538-548.	5.4	20
5	REACTER: A Heuristic Method for Reactive Molecular Dynamics. Macromolecules, 2020, 53, 9953-9961.	2.2	41
6	Machines as Craftsmen: Localized Parameter Setting Optimization for Fused Filament Fabrication 3D Printing. Advanced Materials Technologies, 2019, 4, 1800653.	3.0	38
7	Simulating the effects of carbon nanotube continuity and interfacial bonding on composite strength and stiffness. Composites Science and Technology, 2018, 166, 10-19.	3.8	25
8	Comparing the mechanical response of diâ€, triâ€, and tetraâ€functional resin epoxies with reactive molecular dynamics. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 255-264.	2.4	61
9	Modeling chemical reactions in classical molecular dynamics simulations. Polymer, 2017, 128, 211-217.	1.8	115
10	Exploring the interface between single-walled carbon nanotubes and epoxy resin. Carbon, 2016, 105, 600-606.	5.4	44
11	Simulation of mechanical performance limits and failure of carbon nanotube composites. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 025012.	0.8	14
12	The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube. Journal of Computational Chemistry, 2015, 36, 1587-1596.	1.5	81
13	Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes. Carbon, 2015, 93, 953-966.	5.4	63
14	Simulation of the Elastic and Ultimate Tensile Properties of Diamond, Graphene, Carbon Nanotubes, and Amorphous Carbon Using a Revised ReaxFF Parametrization. Journal of Physical Chemistry A, 2015, 119, 9710-9721.	1.1	97
15	Predicting Thermo-Mechanical Response of Crosslinked Epoxy using ReaxFF. , 2014, , .		O
16	Predicting mechanical response of crosslinked epoxy using ReaxFF. Chemical Physics Letters, 2014, 591, 175-178.	1.2	133
17	Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities. Composites Science and Technology, 2013, 76, 92-99.	3.8	85
18	Parametric Study of ReaxFF Simulation Parameters for Molecular Dynamics Modeling of Reactive Carbon Gases. Journal of Chemical Theory and Computation, 2012, 8, 3003-3008.	2.3	36