Amish G Joshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214992/publications.pdf

Version: 2024-02-01

94 2,399 27 46
papers citations h-index g-index

95 95 95 3956 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Giant exchange bias in antiferromagnetic Pr ₂ CoFe _{0.5} Mn _{0.5} O ₆ : a structural and magnetic properties study. Journal Physics D: Applied Physics, 2022, 55, 365004.	2.8	10
2	Double glassy states and large spontaneous and conventional exchange bias in La _{1.5} Ca _{0.5} CoFeO ₆ ferrimagnetic double perovskite. Journal of Physics Condensed Matter, 2022, 34, 375803.	1.8	1
3	Hydrophobic functionalization of cellulosic substrate by tetrafluoroethane dielectric barrier discharge plasma at atmospheric pressure. Carbohydrate Polymers, 2021, 253, 117272.	10.2	18
4	Existence of Griffiths phase and unusual spin dynamics in double perovskite Tb2CoMnO6. Journal of Magnetism and Magnetic Materials, 2021, 528, 167697.	2.3	16
5	Understanding the correlation between orbital degree of freedom, lattice-striction and magneto-dielectric coupling in ferrimagnetic Mn _{1.5} Cr _{1.5} O ₄ . Journal of Physics Condensed Matter, 2021, 33, 505802.	1.8	2
6	Probing the Griffiths like phase, unconventional dual glassy states, giant exchange bias effects and its correlation with its electronic structure in $Pr(sub)2\hat{a}^3(i)x(i) < sub)Sr(sub) < i > x(i) < sub)Sr(sub) < i > x(i) < sub)Sr(sub) < x(i) < x(i)$	1.8	13
7	Extraordinary magnetic properties of double perovskite Eu ₂ CoMnO ₆ wide band gap semiconductor. Journal of Physics Condensed Matter, 2020, 32, 365802.	1.8	12
8	Optical and magnetic properties of terbium doped zinc oxide nanoparticles with lithium as charge compensator. Optik, 2020, 216, 164839.	2.9	14
9	Identification of point defects on Co-Ni codoping in SnO2 nanocrystals and their effect on the structural and optical properties. Journal of Applied Physics, 2019, 126, .	2.5	6
10	Study of band structure, transport and magnetic properties of BiFeO3–TbMnO3 composite. SN Applied Sciences, 2019, 1, 1.	2.9	6
11	Bandgap Engineering and Signature of Ferromagnetism in Ti _{1â^<i>x</i>} Mn _{<i>x</i>} O _{2Â} Diluted Magnetic Semiconductor Nanoparticles: A Valence Band Study. Physica Status Solidi (B): Basic Research, 2019, 256, 1800262.	1.5	14
12	Investigation of multi-mode spin–phonon coupling and local B-site disorder in Pr ₂ CoFeO ₆ by Raman spectroscopy and correlation with its electronic structure by XPS and XAS studies. Journal of Physics Condensed Matter, 2019, 31, 275802.	1.8	19
13	Facile chemical synthesis and novel application of zinc oxysulfide nanomaterial for instant and superior adsorption of arsenic from water. Journal of Cleaner Production, 2019, 208, 458-469.	9.3	40
14	Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites. Materials Research Express, 2018, 5, 045608.	1.6	19
15	Valence State of Eu and Superconductivity in Se-Substituted EuSr ₂ Bi ₂ S ₄ F ₄ and Eu ₂ SrBi ₂ S ₄ F ₄ . Inorganic Chemistry, 2018, 57, 37-44.	4.0	13
16	An emerging nanostructured molybdenum trioxide-based biocompatible sensor platform for breast cancer biomarker detection. MRS Communications, 2018, 8, 668-679.	1.8	11
17	Local symmetry breaking in SnO ₂ nanocrystals with cobalt doping and its effect on optical properties. Nanoscale, 2018, 10, 10664-10682.	5.6	46
18	Influence of Li co-doping on structural property of sol-gel derived terbium doped zinc oxide nanoparticles. Materials Characterization, 2018, 142, 593-601.	4.4	33

#	Article	IF	CITATIONS
19	Ga-doped ZnO as an electron transport layer for PffBT4T-2OD: PC70BM organic solar cells. Organic Electronics, 2017, 43, 207-213.	2.6	27
20	Unusual Mixed Valence of Eu in Two Materialsâ€"EuSr ₂ Bi ₂ S ₄ F ₄ and Eu ₂ SrBi ₂ S ₄ F ₄ : Mössbauer and X-ray Photoemission Spectroscopy Investigations. Inorganic Chemistry, 2017, 56, 3182-3189.	4.0	23
21	Enhancement in electrical and magnetic properties with Ti-doping in Bi0.5La0.5Fe0.5Mn0.5O3. Journal of Applied Physics, 2017, 121, .	2.5	14
22	Structural, magnetic, magneto-transport properties, and electronic structure study of charge-ordered (La 0.4 Pr 0.6) 0.65 Ca 0.35 MnO 3. Journal of Alloys and Compounds, 2017, 699, 31-37.	5 . 5	9
23	Pr ₂ FeCrO ₆ : A Type I Multiferroic. Inorganic Chemistry, 2017, 56, 12712-12718.	4.0	44
24	Study of structural, dielectric, optical properties and electronic structure of Cr-doped LaInO3 perovskite nanoparticles. Materials Characterization, 2017, 131, 108-115.	4.4	18
25	Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases. Applied Physics Letters, 2016, 108, .	3.3	10
26	Structural, transport and optical properties of (La _{0.6} Pr _{0.4} october (La _{0.6} MnO ₃ nanocrystals: a wide band-gap magnetic semiconductor. Dalton Transactions, 2015, 44, 3109-3117.	3.3	38
27	Magnetic and optical properties of Fe doped crednerite CuMnO ₂ . RSC Advances, 2015, 5, 83504-83511.	3.6	15
28	Effect of Chemical Pressure at the Boundary of Mott Insulator to Itinerant Electron Limit Transition in Spinel Vanadates. Science of Advanced Materials, 2015, 7, 1187-1196.	0.7	4
29	Chemical potential shift and gap-state formation in SrTiO3â°' <i>\hat{l}'</i> revealed by photoemission spectroscopy. Journal of Applied Physics, 2014, 116, .	2.5	20
30	Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy. AIP Advances, 2014, 4, 027114.	1.3	22
31	Highly conductive poly(3,4-ethylenedioxypyrrole) and poly(3,4-ethylenedioxythiophene) enwrapped Sb ₂ S ₃ nanorods for flexible supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 2062-2071.	2.8	28
32	Functionalized Graphite Platelets and Lead Sulfide Quantum Dots Enhance Solar Conversion Capability of a Titanium Dioxide/Cadmium Sulfide Assembly. Journal of Physical Chemistry C, 2014, 118, 18924-18937.	3.1	23
33	Investigation on one-pot hydrothermal synthesis, structural and optical properties of ZnS quantum dots. Materials Chemistry and Physics, 2013, 138, 186-191.	4.0	31
34	Immuno-CoPS (conducting paper strips) for futuristic cost-effective cancer diagnostics. RSC Advances, 2013, 3, 11846.	3.6	11
35	A novel 1,1′-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl)butyl]-4,4′-bipyridinium dibromide (viologen) for a high contrast electrochromic device. Organic Electronics, 2013, 14, 1027-1036.	2.6	50
36	Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 2013, 5, 3043.	5.6	158

#	Article	IF	CITATIONS
37	Nano Porous Hematite for Solar Hydrogen Production. Journal of the Electrochemical Society, 2012, 159, H685-H691.	2.9	19
38	X-ray photoelectron spectroscopy and conducting atomic force microscopy investigations on dual ion beam sputtered MgO ultrathin films. Thin Solid Films, 2012, 520, 6734-6739.	1.8	13
39	Study of hydrophobic finishing of cellulosic substrate using He/1,3-butadiene plasma at atmospheric pressure. Surface and Coatings Technology, 2012, 213, 65-76.	4.8	43
40	ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon, 2012, 50, 385-394.	10.3	335
41	Directed nanoparticle reduction on graphene. Materials Today, 2012, 15, 118-125.	14.2	34
42	Existence of the multiferroic property at room temperature in Ti doped. Solid State Communications, 2012, 152, 360-363.	1.9	24
43	A novel two-phase thermal approach for synthesizing CdSe/CdS core/shell nanostructure. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
44	Highly efficient, tunable and bright photoluminescence from hydrophobic silica gel nanoparticles. Journal of Materials Chemistry, 2011, 21, 9471.	6.7	8
45	Effective Doping of Rare-earth Ions in Silica Gel: A Novel Approach to Design Active Electronic Devices. Nano-Micro Letters, 2011, 3, 141-145.	27.0	7
46	Charge Transport and Electrochemical Response of Poly(3,4-ethylenedioxypyrrole) Films Improved by Noble-Metal Nanoparticles. Journal of Physical Chemistry B, 2011, 115, 7321-7331.	2.6	12
47	Poly(3,4-ethylenedioxythiophene)-Ionic Liquid Functionalized Graphene/Reduced Graphene Oxide Nanostructures: Improved Conduction and Electrochromism. ACS Applied Materials & Diterfaces, 2011, 3, 1115-1126.	8.0	105
48	Poly(3,4-Ethylenedioxypyrrole) Enwrapped by Reduced Graphene Oxide: How Conduction Behavior at Nanolevel Leads to Increased Electrochemical Activity. Journal of Physical Chemistry C, 2011, 115, 18354-18365.	3.1	44
49	Ag promoted La0.8Ba0.2MnO3 type perovskite catalyst for N2O decomposition in the presence of O2, NO and H2O. Journal of Molecular Catalysis A, 2011, 348, 42-54.	4.8	42
50	Shape controlled synthesis and characterization of Cu2O nanostructures assisted by composite surfactants system. Materials Chemistry and Physics, 2011, 129, 740-745.	4.0	20
51	Revelation of graphene-Au for direct write deposition and characterization. Nanoscale Research Letters, 2011, 6, 424.	5.7	24
52	Red to Blue High Electrochromic Contrast and Rapid Switching Poly(3,4-ethylenedioxypyrrole)-Au/Ag Nanocomposite Devices for Smart Windows. ChemPhysChem, 2011, 12, 1176-1188.	2.1	23
53	Low cost, surfactant-less, one pot synthesis of Cu2O nano-octahedra at room temperature. Journal of Solid State Chemistry, 2011, 184, 2209-2214.	2.9	38
54	A Dual Electrochrome of Polyâ€(3,4â€Ethylenedioxythiophene) Doped by <i>N</i> , <i>N</i> ,6>N倲â€Bis(3â€sulfonatopropyl)â€4â€4′â€bipyridiniumâ€"Redox Chemistry and Electrochrom Flexible Devices. ChemSusChem, 2010, 3, 97-105.	iis ซา 8่ท	35

#	Article	IF	Citations
55	Enhanced photoelectrochemistry and interactions in cadmium selenide–functionalized multiwalled carbon nanotube composite films. Electrochimica Acta, 2010, 55, 6731-6742.	5.2	12
56	Fabrication of Luminescent, Magnetic Hollow Core Nanospheres and Nanotubes of Cr-Doped ZnO by Inclusive Coprecipitation Method. Journal of Physical Chemistry C, 2010, 114, 18429-18434.	3.1	48
57	Valence band and core-level analysis of highly luminescent ZnO nanocrystals for designing ultrafast optical sensors. Applied Physics Letters, 2010, 96, .	3.3	58
58	Charge Transport and Electrochromism in Novel Nanocomposite Films of Poly(3,4-ethylenedioxythiophene)-Au Nanoparticlesâ^'CdSe Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 14606-14613.	3.1	38
59	Neutron structural studies on the superconducting (Nd1â^'xCax)(Ba1.6La0.4)Cu3Oz system. Journal of Applied Physics, 2009, 105, 083919.	2.5	1
60	Alumina Supported Co–K–Mo Based Catalytic Material for Diesel Soot Oxidation. Topics in Catalysis, 2009, 52, 2070-2075.	2.8	8
61	Carbothermal synthesis of boron nitride coating on PAN carbon fiber. Journal of the European Ceramic Society, 2009, 29, 2129-2134.	5.7	82
62	Investigation of confinement effects in ZnO quantum dots. Nanotechnology, 2009, 20, 425701.	2.6	36
63	Poly(3,4-ethylenedioxythiophene)â^'Multiwalled Carbon Nanotube Composite Films: Structure-Directed Amplified Electrochromic Response and Improved Redox Activity. Journal of Physical Chemistry B, 2009, 113, 9416-9428.	2.6	113
64	Extreme magnetic anisotropy and multiple superconducting transition signatures in a [Nb(23nm)/Ni(5nm)]5 multilayer. Physica C: Superconductivity and Its Applications, 2008, 468, 523-530.	1.2	5
65	Magnetic instabilities along the superconducting phase boundary of Nbâ [•] Ni multilayers. Journal of Applied Physics, 2007, 101, 09G117.	2.5	3
66	Magnetism and magnetocaloric effect in (DyxGd5â^'x)Si2Ge2 (0â@ $\frac{1}{2}$ xâ@ $\frac{1}{2}$ 5) compounds. Journal of Applied Physics, 2007, 101, 123901.	2.5	9
67	Magnetic and electrical transport properties of DyxGd5â^xxSi2Ge2 (x=0.0, 1.5, 2.5, 3.0, 3.5, 4.5 and 5.0) compounds. Journal of Magnetism and Magnetic Materials, 2007, 309, 212-215.	2.3	7
68	Electrochromic Nanostructured Tungsten Oxide Films by Sol-gel: Structure and Intercalation Properties. Journal of the Electrochemical Society, 2006, 153, C365.	2.9	81
69	Electrodeposited Prussian blue films: Annealing effect. Electrochimica Acta, 2006, 51, 4291-4301.	5. 2	50
70	Variations in the structural, optical and electrochemical properties of CeO2–TiO2 films as a function of TiO2 content. Applied Surface Science, 2006, 252, 5131-5142.	6.1	22
71	Formation of Sb submonolayer phases on high index Si(5512) surface. Surface Science, 2005, 596, 206-211.	1.9	19
72	Formation of antimony 1D-nanostructures on Si (5 5 12) surface. Materials Research Society Symposia Proceedings, 2005, 862, 881.	0.1	0

#	Article	IF	CITATIONS
73	On the effect of thermal history on magnetic properties of CuFe2â^2xAlxCrxO4 system. Journal of Alloys and Compounds, 2004, 369, 58-61.	5.5	5
74	Evidence for a magnetic moment on Ir in IrMnAl from x-ray magnetic circular dichroism. Physical Review B, 2003, 68, .	3.2	9
7 5	Crystal structure, magnetic properties, and Mössbauer studies ofLa0.6Sr0.4FeO3â~δprepared by quenching in different atmospheres. Physical Review B, 2002, 66, .	3.2	45
76	Effect of Cr and Fe doping on the transport and magnetic properties of the low-bandwidth bilayered manganiteSm1.4Sr1.6Mn2O7. Physical Review B, 2002, 66, .	3.2	8
77	Magnetic and neutron diffraction studies on PrMnSb[sub 2]. Journal of Applied Physics, 2002, 91, 7842.	2.5	7
78	Structure and superconductivity of Dy(Ba[sub 2â^'y]La[sub y])Cu[sub 3]O[sub z] (0â‰ y â‰ 9 .5) system. Journal of Applied Physics, 2002, 91, 8498.	2.5	2
79	Superconducting studies on the Ho(Ba2â^'yLay)Cu3Oz (0⩽y⩽0.5) system. Physica B: Condensed Matter, 312-313, 68-70.	2002, 2.7	1
80	Suppression of superconductivity in the (La2.5â^'xGd0.5+x)CaBa3â^'xSrx(Cu1â^'yIny)7Oz system due to hole filling by In and its revival by hole doping with Ca. Physica C: Superconductivity and Its Applications, 2002, 371, 315-320.	1.2	3
81	Magnetization studies on superconducting MgB2 – lower and upper critical fields and critical current density. Solid State Communications, 2001, 118, 445-448.	1.9	28
82	Correlation between Tc and hole concentration in superconducting NdBa2(Cu1â^'xGax)3Oz system. Physica B: Condensed Matter, 2000, 281-282, 906-908.	2.7	1
83	Neutron Structural Studies of the Superconducting (Nd1â^'yCay)Ba2(Cu0.94Ga0.06)3Oz System. Journal of Superconductivity and Novel Magnetism, 2000, 13, 347-352.	0.5	O
84	Effect of Cu-Ga and coupled Nd-Ca/Cu-Ga substitution on the superconductivity of NdBa2Cu3O7-δ. Superconductor Science and Technology, 2000, 13, 1279-1285.	3.5	2
85	Correlation between hole concentration and Tc in (La2â^'xYx)Ba2(CayCu4+y)Oz superconductors. Physica B: Condensed Matter, 1999, 259-261, 538-539.	2.7	3
86	Influence of hole-filling by La and hole-doping by Ca on the superconductivity of NdBa2Cu3O7â^Î. Physica C: Superconductivity and Its Applications, 1999, 320, 87-95.	1.2	11
87	Effect of Ca Substitution on the Superconductivity of La2.5Y0.5CaBa3(Cu0.88Fe0.12)7O z. Journal of Superconductivity and Novel Magnetism, 1998, 11, 673-676.	0.5	O
88	Title is missing!. Journal of Superconductivity and Novel Magnetism, 1998, 11, 285-290.	0.5	1
89	Effect of Mo and Mo-Ca substitution on the superconductivity of GdBa2Cu3O7â^î^. Applied Superconductivity, 1998, 6, 471-481.	0.5	3
90	Superconductivity in (La2â^'xYx)Ba2(CayCu4+y)Oz system. Materials Letters, 1998, 37, 68-71.	2.6	0

#	Article	IF	CITATIONS
91	Effect of Mo and Moî—,Ca substitution on the superconductivity of GaBa2Cu3O7â^Î. Physica C: Superconductivity and its Applications, 1997, 291, 25-33.	1.2	5
92	Effect of Cd and Cd-Ca Substitution on the Superconductivity in Y1â^'xPrxBa2Cu3O7â^'Î' Superconductor. Journal of Superconductivity and Novel Magnetism, 1997, 10, 507-511.	0.5	0
93	Effect of Hf and Hf-Ca substitution on the superconductivity of GdBa2Cu3O7 â° Î'. Applied Superconductivity, 1996, 4, 327-335.	0.5	1

Effect of Anisotropy on Magnetic Ordering in the Spinel System

CoZn<sub>z</sub>Ge<sub>z</sub>Cr<sub>x-z</sub>Fe<sub>2-x-z</sub>0<sub>4</sub>4</sub>6.

Solid State Phenomena, 0, 202, 155-160.